[1] CHEN X Q, LEI Z L, CAO J, et al. Traditional uses, phytochemistry, pharmacology and current uses of underutilized Xanthoceras sorbifolium bunge: A review[J]. Journal of Ethnopharmacology, 2022, 283: 114747. doi: 10.1016/j.jep.2021.114747
[2] MA Y X, BI Q X, LI G T, et al. Provenance variations in kernel oil content, fatty acid profile and biodiesel properties of Xanthoceras sorbifolium Bunge in northern China[J]. Industrial Crops and Products, 2020, 151: 112487. doi: 10.1016/j.indcrop.2020.112487
[3] LIANG Q, LIU J N, FANG H C, et al. Genomic and transcriptomic analyses provide insights into valuable fatty acid biosynthesis and environmental adaptation of yellowhorn[J]. Frontiers in Plant Science, 2022, 13: 991197. doi: 10.3389/fpls.2022.991197
[4] WANG L, RUAN C J, LIU L Y, et al. Comparative RNA-seq analysis of high- and low-oil yellow horn during embryonic development[J]. International Journal of Molecular Sciences, 2018, 19(10): 3071. doi: 10.3390/ijms19103071
[5] BUSTIN S A, BENES V, NOLAN T, et al. Quantitative real-time RT-PCR – a perspective[J]. Journal of Molecular Endocrinology, 2005, 34(3): 597-601. doi: 10.1677/jme.1.01755
[6] LI C Q, HU L Z, WANG X Q, et al. Selection of reliable reference genes for gene expression analysis in seeds at different developmental stages and across various tissues in Paeonia ostii[J]. Molecular Biology Reports, 2019, 46(6): 6003-6011. doi: 10.1007/s11033-019-05036-7
[7] HU Y, CHEN H, LUO C, et. al. Selection of reference genes for real-time quantitative PCR studies of kumquat in various tissues and under abiotic stress[J]. Scientia Horticulturae, 2014, 174: 207-216. doi: 10.1016/j.scienta.2013.12.003
[8] GUO H H, LI Q Q, WANG T T, et al. XsFAD2 gene encodes the enzyme responsible for the high linoleic acid content in oil accumulated in Xanthoceras sorbifolia seeds[J]. Journal of the Science of Food and Agriculture, 2014, 94(3): 482-488. doi: 10.1002/jsfa.6273
[9] ZHAO N, ZHANG Y, LI Q Q, et al. Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds[J]. Plant Physiology and Biochemistry, 2015, 87: 9-16. doi: 10.1016/j.plaphy.2014.12.009
[10] GUO Y X, SONG H F, ZHAO Y Y, et al. Switch from symplasmic to aspoplasmic phloem unloading in Xanthoceras sorbifolia fruit and sucrose influx XsSWEET10 as a key candidate for sugar transport[J]. Plant Science, 2021, 313: 111089. doi: 10.1016/j.plantsci.2021.111089
[11] ZHAO Y, LIU X J, WANG M K, et al. Transcriptome and physiological analyses provide insights into the leaf epicuticular wax accumulation mechanism in yellowhorn[J]. Horticulture Research, 2021, 8(1): 134. doi: 10.1038/s41438-021-00564-5
[12] GUO H H, WANG T T, LI Q Q, et al. Two novel diacylglycerol acyltransferase genes from Xanthoceras sorbifolia are responsible for its seed oil content[J]. Gene, 2013, 527(1): 266-274. doi: 10.1016/j.gene.2013.05.076
[13] WANG L, RUAN C J, BAO A M, et al. Small RNA profiling for identification of microRNAs involved in regulation of seed development and lipid biosynthesis in yellowhorn[J]. BMC Plant Biology, 2021, 21(1): 464. doi: 10.1186/s12870-021-03239-4
[14] 王 旭, 敖 妍, 刘 阳, 等. 文冠果实时荧光定量PCR内参基因的筛选[J]. 分子植物育种, 2020, 18(9):2977-2986.
[15] LI J W, CHEN C J, ZENG Z H, et al. SapBase (Sapinaceae Genomic DataBase): a central portal for functional and comparative genomics of Sapindaceae species[J]. BioRxiv, 2022, v1: 517904.
[16] SILVER N, BEST S, JIANG J, et al. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR[J]. BMC Molecular Biology, 2006, 7(1): 33. doi: 10.1186/1471-2199-7-33
[17] PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509-515. doi: 10.1023/B:BILE.0000019559.84305.47
[18] VANDESOMPELE J, De PRETER K, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): research0034.1. doi: 10.1186/gb-2002-3-7-research0034
[19] ANDERSEN C L, JENSEN J L, ØRNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15): 5245-5250. doi: 10.1158/0008-5472.CAN-04-0496
[20] NARANCIO R, JOHN U, MASON J, et al. Selection of optimal reference genes for quantitative RT-PCR transcript abundance analysis in white clover (Trifolium repens L. )[J]. Functional Plant Biology, 2018, 45(7): 737-744. doi: 10.1071/FP17304
[21] 姚李祥, 潘春柳, 余丽莹, 等. 草果种子休眠解除过程中qRT-PCR内参基因筛选[J]. 中国中药杂志, 2021, 46(15):3832-3837.
[22] NIU L J, TAO Y B, CHEN M S, et al. Selection of reliable reference genes for gene expression studies of a promising oilseed crop, Plukenetia volubilis, by real-time quantitative PCR[J]. International Journal of Molecular Sciences, 2015, 16(6): 12513-12530.