[1] Amaro A, Reed D, Tome M, et al. Modeling dominant height growth: Eucalyptus plantations in Portugal[J]. Forest Science, 1998, 44(1): 37-46.
[2] Sharma R P, Vacek Z, Vacek S, et al. Modelling individual tree diameter growth for Norway spruce in the Czech Republic using a generalized algebraic difference approach[J]. Journal of Forest Science, 2017, 63(5): 227-238. doi: 10.17221/135/2016-JFS
[3] 段爱国, 张建国. 杉木人工林优势高生长模拟及多形地位指数方程[J]. 林业科学, 2004, 40(6):13-19. doi: 10.3321/j.issn:1001-7488.2004.06.003
[4] Peter S J, Vanclay J K. Forest site productivity: a review of spatial and temporal variability in natural site conditions[J]. Forestry, 2013, 86(3): 305-315. doi: 10.1093/forestry/cpt010
[5] 雷相东, 朱光玉, 卢 军. 云冷杉阔叶混交过伐林林分优势高估计方法的研究[J]. 林业科学研究, 2018, 31(1):10. doi: 10.13275/j.cnki.lykxyj.2018.01.004
[6] Borders B E, Bailey R L, Ware K D. Slash pine site index from a polymorphic model by joining (splining) nonpolynomial segments with an algebraic difference method[J]. Forest Science, 1984, 30(2): 411-423.
[7] Vanclay J K. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests[M]. CAB International, 1994.
[8] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006.
[9] Vanclay, Jerome K. Aggregating tree species to develop diameter increment equations for tropical rainforests[J]. Forest Ecology and Management, 1991, 42(3-4): 143-168. doi: 10.1016/0378-1127(91)90022-N
[10] Cieszewski C J, Bailey R L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes[J]. Forest Science, 2000, 46(1): 116-126.
[11] Arias-Rodil M, Crecente-Campo F, Barrio-Anta M, et al. Evaluation of age-independent methods of estimating site index and predicting height growth: a case study for maritime pine in Asturias (NW Spain)[J]. European Journal of Forest Research, 2015, 134(2): 223-233. doi: 10.1007/s10342-014-0845-z
[12] Tomé J, Tomé M, Barreiro S, et al. Age-independent difference equations for modelling tree and stand growth[J]. Canadian Journal of Forest Research, 2006, 36(7): 1621-1630. doi: 10.1139/x06-065
[13] Gea-Izquierdo G, Cañellas I, Montero G. Site index in agroforestry systems: age-dependent and age-independent dynamic diameter growth models for Quercus ilex in Iberian open oak woodlands[J]. Revue Canadienne De Recherche Forestière, 2008, 38(1): 101-113.
[14] Tomé M, Paulo J A. An individual tree growth model for juvenile cork oak stands in southern Portugal[J]. Silva Lusitana, 2009, 17(1): 27-38.
[15] 葛宏立, 孟宪宇, 唐小明. 应用于森林资源连续清查的生长模型系统[J]. 林业科学研究, 2004, 17(4):413-419. doi: 10.3321/j.issn:1001-1498.2004.04.002
[16] 葛宏立, 项小强, 何时珍, 等. 年龄隐含的生长模型在森林资源连续清查中的应用[J]. 林业科学研究, 1997, 10(4):420-425. doi: 10.3321/j.issn:1001-1498.1997.04.014
[17] 国 红, 雷渊才, 郎璞玫. 年龄无关的生长模型研究——以落叶松平均高为例[J]. 林业科学研究, 2020, 33(5):129-136.
[18] 李亚藏, 冯仲科. 气候敏感的马尾松生物量相容性方程系统研建[J]. 林业科学, 2019, 55(5):66-73. doi: 10.11707/j.1001-7488.20190508
[19] 高东启, 邓华锋, 程志楚, 等. 北京市蒙古栎单木与年龄无关的生长预测模型研究[J]. 福建林学院学报, 2013, 33(4):305-309. doi: 10.3969/j.issn.1001-389X.2013.04.004
[20] Sánchez-González M, Rio M D, Ellas I, et al. Distance independent tree diameter growth model for cork oak stands[J]. Forest Ecology and Management, 2006, 225(1-3): 262-270. doi: 10.1016/j.foreco.2006.01.002
[21] Pukkala T, Lhde E, Laiho O. Growth and yield models for uneven-sized forest stands in Finland[J]. Forest Ecology and Management, 2009, 258(3): 207-216. doi: 10.1016/j.foreco.2009.03.052
[22] Hall K B, Stape J, Bullock B P, et al. A Growth and Yield Model for Eucalyptus benthamii in the Southeastern United States[J]. Forest Science, 2020, 66(1): 25-37.
[23] 邹奕巧, 杜 群, 葛宏立. 有年龄生长模型应用于无年龄情况研究[J]. 浙江农林大学学报, 2012, 29(6):889-896.
[24] 邱思玉, 曹元帅, 孙玉军, 等. 杉木人工林与年龄无关的优势高生长模型[J]. 南京林业大学学报:自然科学版, 2019, 43(5):121-127.