[1] Acosta-Motos J R, Ortuño M F, Bernal-Vicente A et al. Plant responses to salt stress: adaptive mechanisms[J]. Agronomy, 2017, 7(1): 18. doi: 10.3390/agronomy7010018
[2] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annu. Rev Plant Biol, 2006, 57(1): 781-803. doi: 10.1146/annurev.arplant.57.032905.105444
[3] Ohama N, Sato H, Shinozaki Ket al. Transcriptional regulatory network of plant heat stress response[J]. Trends in plant science, 2017, 22(1): 53-65. doi: 10.1016/j.tplants.2016.08.015
[4] Dezar C A, Gago G M, González D H, et al. Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants[J]. Transgenic research, 2005, 14(4): 429-440. doi: 10.1007/s11248-005-5076-0
[5] Riechmann J, Heard J, Martin, G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105-2110. doi: 10.1126/science.290.5499.2105
[6] Ariel F D, Manavella P A, Dezar C A, et al. The true story of the HD-Zip family[J]. Trends in Plant ence, 2007, 12(9): 419-426. doi: 10.1016/j.tplants.2007.08.003
[7] Hu J, Chen G, Yin W, et al. Silencing of SlHB2 improves drought, salt stress tolerance, and induces stress-related gene expression in tomato[J]. Journal of Plant Growth Regulation, 2017, 36(3): 578-589. doi: 10.1007/s00344-017-9664-z
[8] Henriksson E, Olsson A S, Johannesson H, et al. Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships[J]. Plant physiology, 2005, 139(1): 509-518. doi: 10.1104/pp.105.063461
[9] Agalou A, Purwantomo S, Övernäs E, et al. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members[J]. Plant molecular biology, 2008, 66(1-2): 87-103. doi: 10.1007/s11103-007-9255-7
[10] Lin Z, Hong Y, Yin M, et al. A tomato HD‐Zip homeobox protein, LeHB‐1, plays an important role in floral organogenesis and ripening[J]. The Plant Journal, 2008, 55(2): 301-310. doi: 10.1111/j.1365-313X.2008.03505.x
[11] Manavella P A, Arce A L, Dezar C A, et al. Cross‐talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb‐4 transcription factor[J]. The Plant Journal, 2006, 48(1): 125-137. doi: 10.1111/j.1365-313X.2006.02865.x
[12] Olsson A, Engström P, Söderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis[J]. Plant molecular biology, 2004, 55(5): 663-677. doi: 10.1007/s11103-004-1581-4
[13] Shin D, Koo Y D, Lee J, et al. Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion[J]. Biochemical and biophysical research communications, 2004, 323(2): 534-540. doi: 10.1016/j.bbrc.2004.08.127
[14] Zhang S, Haider I, Kohlen W, et al. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice[J]. Plant molecular biology, 2012, 80(6): 571-585. doi: 10.1007/s11103-012-9967-1
[15] Cabello J V, Arce A L, Chan R L. The homologous HD‐Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis‐related and glucanase proteins[J]. The Plant Journal, 2012, 69(1): 141-153. doi: 10.1111/j.1365-313X.2011.04778.x
[16] Zhao Y, Ma Q, Jin X, et al. A novel maize homeodomain–leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis[J]. Plant and Cell Physiology, 2014, 55(6): 1142-1156. doi: 10.1093/pcp/pcu054
[17] Khanna R, Kronmiller B, Maszle D R, et al. The Arabidopsis B-box zinc finger family[J]. The Plant Cell, 2009, 21(11): 3416-3420. doi: 10.1105/tpc.109.069088
[18] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular biology and evolution, 2016, 33(7): 1870-1874. doi: 10.1093/molbev/msw054
[19] Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic acids research, 2003, 31(13): 3784-3788. doi: 10.1093/nar/gkg563
[20] Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009
[21] He N, Zhang C, Qi X, et al. Draft genome sequence of the mulberry tree Morus notabilis[J]. Nature communications, 2013, 4(1): 1-9.
[22] Jiao F, Luo R, Dai X, et al. Chromosome-level reference genome and population genomic analysis provide insights into the evolution and improvement of domesticated mulberry (Morus alba)[J]. Molecular Plant, 2020, 13(7): 1001-1012. doi: 10.1016/j.molp.2020.05.005
[23] 韩利红, 刘 潮, 刘学林, 等. 桑树PHR家族基因的鉴定及生物信息学分析[J]. 分子植物育种, 2020, 18(18):5991-5999.
[24] 惠 甜, 沈兵琪, 王连春, 等. 桑树bHLH转录因子家族全基因组鉴定与分析[J]. 分子植物育种, 2019, 17(17):5624-5637.
[25] 周 宏, 李荣芳, 陈丹丹, 等. 桑树Trihelix转录因子家族研究[J]. 基因组学与应用生物学, 2018, 37(2):874-880.
[26] Zhao Y, Zhou Y, Jiang H, et al. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize[J]. PloS ONE, 2011, 6(12): e28488. doi: 10.1371/journal.pone.0028488
[27] Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes[J]. Molecular biology and evolution, 2009, 26(12): 2775-2794. doi: 10.1093/molbev/msp201
[28] Li R, Ge H, Dai Y, et al. Genomewide analysis of homeobox gene family in apple (Malus domestica Borkh. ) and their response to abiotic stress[J]. Journal of genetics, 2019, 98(1): 1-11. doi: 10.1007/s12041-018-1053-2
[29] Bhalothia P, Sangwan C, Alok A, et al. PP2C-like promoter and its deletion variants are induced by ABA but not by MeJA and SA in Arabidopsis thaliana[J]. Frontiers in plant science, 2016, 7: 547.
[30] Son O, Hur Y-S, Kim Y K, et al. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene[J]. Plant and Cell Physiology, 2010, 51(9): 1537-1547. doi: 10.1093/pcp/pcq108
[31] Re D A, Dezar C A, Chan R L, et al. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions[J]. Journal of Experimental Botany, 2011, 62(1): 155-166. doi: 10.1093/jxb/erq252
[32] Ariel F, Diet A, Verdenaud M, et al. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1[J]. The Plant Cell, 2010, 22(7): 2171-2183. doi: 10.1105/tpc.110.074823
[33] Ge X X, Liu Z, Wu X M, et al. Genome-wide identification, classification and analysis of HD-ZIP gene family in citrus, and its potential roles in somatic embryogenesis regulation[J]. Gene, 2015, 574(1): 61-68. doi: 10.1016/j.gene.2015.07.079
[34] Shao J, Haider I, Xiong L, et al. Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice[J]. PLoS ONE, 2018, 13(7): e0199248. doi: 10.1371/journal.pone.0199248
[35] Liu W, Fu R, Li Q, et al. Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus[J]. Gene, 2013, 531(2): 279-287. doi: 10.1016/j.gene.2013.08.089
[36] Hjellström, M. Drought stress signal transduction by the HD-ZIP transcription factors ATHB6 and ATHB7[D]. Sweden: Universitatis Upsaliensis, 2002: 1-50.
[37] Huang X, Duan M, Liao J, et al. OsSLI1, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L. )[J]. The Scientific World Journal, 2014, 2014: 1-9.
[38] Skinner D J, Gasser C S. Expression-based discovery of candidate ovule development regulators through transcriptional profiling of ovule mutants[J]. BMC plant biology, 2009, 9(1): 1-20. doi: 10.1186/1471-2229-9-1
[39] Li C, Zhao M, Ma X, et al. The HD-Zip transcription factor LcHB2 regulates litchi fruit abscission through the activation of two cellulase genes[J]. Journal of experimental botany, 2019, 70(19): 5189-5203. doi: 10.1093/jxb/erz276
[40] He X, Wang T, Zheng X, et al. The cotton HD-Zip transcription factor GhHB12 regulates flowering time and plant architecture via the GhmiR157-GhSPL pathway[J]. Communications biology, 2018, 1(1): 1-8. doi: 10.1038/s42003-017-0002-6
[41] Aoyama T, Dong C H, Wu Y, et al. Ectopic expression of theArabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco[J]. The Plant Cell, 1995, 7(11): 1773-1785.
[42] Wang Y. The role of the homeobox gene ATHB16 in development regulation in Arabidopsis thaliana[J]. Acta Universitatis Upsaliensis, 2001.
[43] Manavella P A, Dezar C A, Bonaventure G, et al. HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses[J]. The Plant Journal, 2008, 56(3): 376-388. doi: 10.1111/j.1365-313X.2008.03604.x