[1] 江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002: 221-352.
[2] 汪奎宏, 黄伯惠. 中国毛竹[M]. 杭州: 浙江科学技术出版社, 1996: 1-29.
[3] 谭宏超, 陶现灵, 谭汝强. 13种竹种子低温储存条件及种子育苗环境研究[J]. 世界竹藤通讯, 2018, 16(1):16-20.
[4] 姚文静, 王 茹, 王 星, 等. 毛竹实生苗生长发育规律及其模型拟合研究[J]. 西部林业科学, 2020, 49(3):14-20,28.
[5] 张金菊, 张国敏, 贾碧玉, 等. 毛竹种子育苗技术初探[J]. 现代园艺, 2015(12):26. doi: 10.3969/j.issn.1006-4958.2015.12.021
[6] Acosta-Motos J, Ortuño M, Bernal-Vicente A, et al. Plant responses to salt stress: adaptive mechanisms[J]. Agronomy, 2017, 7(1): 18. doi: 10.3390/agronomy7010018
[7] Singh M, Kumar J, Singh S, et al. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 407-426. doi: 10.1007/s11157-015-9372-8
[8] 张乃华, 汪爱君, 黄超钢, 等. 毛竹种子育苗造林技术[J]. 世界竹藤通讯, 2012(2):32-34. doi: 10.3969/j.issn.1672-0431.2012.02.010
[9] 黄业伟, 杨 丽, 张智俊. NaCl胁迫对毛竹种子萌发及幼苗生长的影响[J]. 种子, 2009(10):16-18.
[10] 宋沁春, 魏 开, 漆冬梅, 等. 盐胁迫下超声波处理对毛竹种子萌发及幼苗生长的影响[J]. 种子, 2018(3):83-85. doi: 10.16590/j.cnki.1001-4705.2018.03.083
[11] 杨振亚, 周本智, 周 燕, 等. PEG模拟干旱对毛竹种子萌发及生长生理特性的影响[J]. 林业科学研究, 2018, 31(6):47-54. doi: 10.13275/j.cnki.lykxyj.2018.06.007
[12] 蔡春菊, 范少辉, 曹帮华, 等. PEG和GA_3引发处理对老化毛竹种子理化特性的影响[J]. 南京林业大学学报:自然科学版, 2018, 42(2):40-46.
[13] Zhang B H, Pan X P, Cobb G P, et al. Plant microRNA: a small regulatory molecule with big impact[J]. Developmental Biology, 2006, 289(1): 3-16. doi: 10.1016/j.ydbio.2005.10.036
[14] Dong Q K, Hu B B, Zhang C. MicroRNAs and their roles in plant development[J]. Frontiers in Plant Science, 2022, 13: 824240. doi: 10.3389/fpls.2022.824240
[15] Islam W, Adnan M, Huang Z Q, et al. Small RNAs from seed to mature plant[J]. Critical Reviews in Plant Sciences, 2019, 38(2): 117-139. doi: 10.1080/07352689.2019.1608404
[16] Das S S, Karmakar P, Nandi A K, et al. Small RNA mediated regulation of seed germination[J]. Frontiers in Plant Science, 2015, 6: 828.
[17] Liu P, Montgomery T A, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages[J]. Plant Journal, 2007, 52(1): 133-146. doi: 10.1111/j.1365-313X.2007.03218.x
[18] Reyes J L, Chua N. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination[J]. Plant Journal, 2007, 49(4): 592-606. doi: 10.1111/j.1365-313X.2006.02980.x
[19] Zhang B. MicroRNA: a new target for improving plant tolerance to abiotic stress[J]. Journal of Experimental Botany, 2015, 66(7): 1749-1761. doi: 10.1093/jxb/erv013
[20] Zhao H, Wang L, Dong L, et al. Discovery and comparative profiling of microRNAs in representative monopodial bamboo (Phyllostachys edulis) and sympodial bamboo (Dendrocalamus latiflorus)[J]. PloS ONE, 2014, 9(7): e102375. doi: 10.1371/journal.pone.0102375
[21] Ge W, Zhang Y, Cheng Z, et al. Main regulatory pathways, key genes and microRNAs involved in flower formation and development of Moso Bamboo (Phyllostachys edulis)[J]. Plant Biotechnology Journal, 2017, 15(1): 82-96. doi: 10.1111/pbi.12593
[22] Cheng Z, Hou D, Ge W, et al. Integrated mRNA, microRNA transcriptome and degradome analyses provide insights into stamen development in Moso Bamboo[J]. Plant and Cell Physiology, 2020, 61(1): 76-87. doi: 10.1093/pcp/pcz179
[23] Wang K L, Zhang Y, Zhang H M, et al. MicroRNAs play important roles in regulating the rapid growth of the Phyllostachys edulis culm internode[J]. New Phytologist, 2021, 231(6): 2215-2230. doi: 10.1111/nph.17542
[24] Jin Q, Peng H, Lin E, et al. Identification and characterization of differentially expressed miRNAs between bamboo shoot and rhizome shoot[J]. Journal of Plant Biology, 2016, 59(4): 322-335. doi: 10.1007/s12374-015-0581-z
[25] Kozomara A, Griffiths-Jones S. MiRBase: annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Research, 2013, 42(D1): D68-D73.
[26] Kalvari I, Nawrocki E P, Ontiveros-Palacios N, et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families[J]. Nucleic Acids Research, 2021, 49(D1): D192-D200. doi: 10.1093/nar/gkaa1047
[27] Friedlnder M R, Mackowiak S D, Na L, et al. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 2012(1): 37-52.
[28] Wen M, Shen Y, Shi S, et al. MiREvo: an Integrative microRNA evolutionary analysis platform for next-generation sequencing experiments[J]. BMC Bioinformatics, 2012, 13(1): 140. doi: 10.1186/1471-2105-13-140
[29] Robinson M D, McCarthy D J, Smyth G K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2009, 26(1): 139-140.
[30] Dai X, Zhao P X. PsRNATarget: a plant small rna target analysis server[J]. Nucleic Acids Research, 2011, 39: W155-W159. doi: 10.1093/nar/gkr319
[31] Fahlgren N, Carrington J C. MiRNA target prediction in plants[J]. Methods in Molecular Biology (Clifton, N. J. ), 2010, 592: 51-57.
[32] Kanehisa M. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(90001): 277D-280D. doi: 10.1093/nar/gkh063
[33] Young M D, Wakefield M J, Smyth G K, et al. Gene ontology analysis for RNA-seq: accounting for selection bias[J]. Genome Biology, 2010, 11(2): R14. doi: 10.1186/gb-2010-11-2-r14
[34] 黄志明, 李晨曦, 陈 磊, 等. 毛竹4个miRNA在胚芽萌发过程的表达响应研究[J]. 热带作物学报, 2017, 38(11):2112-2118. doi: 10.3969/j.issn.1000-2561.2017.11.019
[35] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[36] Alex D, Bach T J, Chye M L. Expression of Brassica juncea 3-hydroxy-3-methylglutaryl CoA synthase is developmentally regulated and stress-Responsive[J]. Plant Journal, 2000, 22(5): 415-426. doi: 10.1046/j.1365-313X.2000.00751.x
[37] Nonogaki H. MicroRNA gene regulation cascades during early stages of plant development[J]. Plant and Cell Physiology, 2010, 51(11): 1840-1846. doi: 10.1093/pcp/pcq154
[38] Lu Y, Feng Z, Meng Y, et al. SLENDER RICE1 and Oryza sativa INDETERMINATE DOMAIN2 regulating osmiR396 are involved in stem elongation[J]. Plant Physiology, 2020, 182(4): 2213-2227. doi: 10.1104/pp.19.01008
[39] Bai B, Shi B, Hou N, et al. MicroRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination[J]. BMC Plant Biology, 2017, 17(1): 150. doi: 10.1186/s12870-017-1095-2
[40] Kim J Y, Kwak K J, Jung H J, et al. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting Demeter-Like Protein3 mRNA[J]. Plant and Cell Physiology, 2010, 51(6): 1079-1083. doi: 10.1093/pcp/pcq072
[41] Chung P J, Park B S, Wang H, et al. Light-inducible miR163 targets PXMT1 transcripts to promote seed germination and primary root elongation in Arabidopsis[J]. Plant Physiology, 2016, 170(3): 1772-1782. doi: 10.1104/pp.15.01188
[42] Jung H J, Kang H. Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions[J]. Plant Physiology and Biochemistry, 2007, 45(10-11): 805-811. doi: 10.1016/j.plaphy.2007.07.015
[43] Jian H, Wang J, Wang T, et al. Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses[J]. Frontiers in Plant Science, 2016, 7: 658.
[44] Sun Z, Kumar R M S, Li J, et al. In silico search and biological validation of microR171 family related to abiotic stress response in mulberry (Morus alba)[J]. Horticultural Plant Journal, 2022, 8(2): 184-194. doi: 10.1016/j.hpj.2021.11.003
[45] Zang Q, Zhang Y, Han S, et al. Transcriptional and post-transcriptional regulation of the miR171-LaSCL6 module during somatic embryogenesis in Larix kaempferi[J]. Trees, 2021, 35(1): 145-154. doi: 10.1007/s00468-020-02026-2
[46] Li H, Zhang J, Yang Y, et al. MiR171 and its target gene SCL6 contribute to embryogenic callus induction and torpedo-shaped embryo formation during somatic embryogenesis in two lily species[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 130(3): 591-600. doi: 10.1007/s11240-017-1249-9
[47] Shi Q, Long J, Yin Z, et al. MiR171 modulates induction of somatic embryogenesis in Citrus callus[J]. Plant Cell Reports, 2022, 41(6): 1403-1415. doi: 10.1007/s00299-022-02865-y
[48] Kravchik M, Stav R, Belausov E, et al. Functional characterization of microRNA171 family in tomato[J]. Plants, 2019, 8(1): 10. doi: 10.3390/plants8010010
[49] Jiang S, Chen Q, Zhang Q, et al. Pyr-miR171f-targeted PyrSCL6 and PyrSCL22 genes regulate shoot growth by responding to IAA signaling in pear[J]. Tree Genetics & Genomes, 2018, 14(2): 20.
[50] Li Y, Wan L, Bi S, et al. Identification of drought-responsive microRNAs from roots and leaves of alfalfa by high-throughput sequencing[J]. Genes, 2017, 8(4): 119. doi: 10.3390/genes8040119