[1] Li C, Xiong K N, Wu G M. Process of biodiversity research of karst areas in China[J]. Acta Ecologica Sinica, 2013, 33(4): 192-200. doi: 10.1016/j.chnaes.2013.05.005
[2] Zhang Z H, Hu G, Zhu D H, et al. Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China[J]. Ecological Research, 2010, 25(6): 1151-1160. doi: 10.1007/s11284-010-0740-0
[3] 张忠华, 胡 刚, 倪 健. 茂兰喀斯特常绿落叶阔叶混交林树种的空间分布格局及其分形特征[J]. 生态学报, 2015, 35(24):8221-8230.
[4] 郭屹立, 王 斌, 向悟生, 等. 广西弄岗北热带喀斯特季节性雨林监测样地种群空间点格局分析[J]. 生物多样性, 2015, 23(2):183-191.
[5] 杨文松, 容 丽, 叶天木, 等. 黔中喀斯特次生林优势物种空间分布格局及关联性[J]. 应用生态学报, 2022, 33(5):1215-1222.
[6] Li J, Zhang L J, Li Y F. Exposed rock reduces tree size, but not diversity[J]. Frontiers in Plant Science, 2022, 13: 851781. doi: 10.3389/fpls.2022.851781
[7] Li Y F, Luo X Q, Li J. Habitat heterogeneity in karst environments influences the proportion and distribution of random framework[J]. Ecological Indicators, 2022, 143: 109387. doi: 10.1016/j.ecolind.2022.109387
[8] Liu L B, Wu Y Y, Hu G, et al. Biomass of karst evergreen and deciduous broad-leaved mixed forest in central Guizhou province, southwestern China: a comprehensive inventory of a 2 ha plot[J]. Silva Fennica, 2016, 50(3): 1492.
[9] Qi Y J, Zhang G Q, Luo G L, et al. Community-level consequences of harsh environmental constraints based on spatial patterns analysis in karst primary forest of southwest China[J]. Forest Ecology and Management, 2021, 488: 119021. doi: 10.1016/j.foreco.2021.119021
[10] Zhang Z H, Hu G, Ni J. Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical karst forests, Southwestern China[J]. Journal of Mountain Science, 2013, 10(1): 95-104. doi: 10.1007/s11629-013-2429-7
[11] Zhang Z H, Hu G, Zhu J D, et al. Aggregated spatial distributions of species in a subtropical karst forest, southwestern China[J]. Journal of Plant Ecology, 2013, 6 (2): 131-140.
[12] Li Y F, He J A, Y F, et al. Spatial structure of the vertical layers in a subtropical secondary forest 57 years after clear-cutting[J]. iForest, 2019, 12 (5): 442.
[13] 李 杰, 李远发, 陆道调, 等. 南盘江流域松栎混交林的分层多样性特征[J]. 生态学杂志, 2023, 42(3):524-533.
[14] Quiñonez-Barraza G, Zhao D H, De Los Santos Posadas H M, et al. Considering neighborhood effects improves individual dbh growth models for natural mixed-species forests in Mexico[J]. Annals of Forest Science, 2018, 75(3): 1-11.
[15] Petritan I C, Marzano R, Petritan A M, et al. Overstory succession in a mixed Quercus petraeaFagus sylvatica old growth forest revealed through the spatial pattern of competition and mortality[J]. Forest Ecology and Management, 2014, 326: 9-17. doi: 10.1016/j.foreco.2014.04.017
[16] Guo Y L, Chen H Y H, Wang B, et al. Conspecific and heterospecific crowding facilitate tree survival in a tropical karst seasonal rainforest[J]. Forest Ecology and Management, 2021, 481: 118751. doi: 10.1016/j.foreco.2020.118751
[17] 张家城, 陈 力, 郭泉水, 等. 演替顶极阶段森林群落优势树种分布的变动趋势研究[J]. 植物生态学报, 1999, 23(3):256-268.
[18] Kint V. Structural development in ageing temperate Scots pine stands[J]. Forest Ecology and Management, 2005, 214(1-3): 237-250. doi: 10.1016/j.foreco.2005.04.014
[19] Río M, Pretzsch H, Alberdi I, et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives[J]. European Journal of Forest Research, 2016, 135(1): 23-49. doi: 10.1007/s10342-015-0927-6
[20] 龚直文, 亢新刚, 顾 丽, 等. 天然林林分结构研究方法综述[J]. 浙江林学院学报, 2009, 26(3):434-443.
[21] 盘远方, 梁志慧, 李嘉宝, 等. 桂林岩溶石山常绿落叶阔叶混交林群落结构与物种多样性[J]. 生态学报, 2021, 41(6):2451-2459.
[22] 张忠华, 胡 刚, 刘立斌, 等. 黔中北亚热带喀斯特次生林动态监测样地: 物种组成与群落结构[J]. 生态学报, 2022, 42(2):742-754.
[23] 黎明慧, 李远发. 评估径阶距对南盘江流域天然林物种多样性的影响[J]. 南京林业大学学报(自然科学版), 2021, 47(4):211-220.
[24] Wang H X, Peng H, Hui G Y, et al. Large trees are surrounded by more heterospecific neighboring trees in Korean pine broad-leaved natural forests[J]. Scientific Reports, 2018, 8(1): 1-11.
[25] Li Y F, He J A, Yu S F, et al. Spatial structures of different-sized tree species in a secondary forest in the early succession stage[J]. European Journal of Forest Research, 2020, 139(5): 709-719. doi: 10.1007/s10342-020-01280-w
[26] 桂旭君, 练琚愉, 张入匀, 等. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6):619-629.
[27] Ishii H, Reynolds J H, Ford E D, et al. Height growth and vertical development of an old-growth Pseudotsuga-Tsuga forest in southwestern Washington State, USA[J]. Canadian Journal of Forest Research, 2000, 30(1): 17-24. doi: 10.1139/x99-180
[28] Magee L, Wolf A, Howe R, et al. Density dependence and habitat heterogeneity regulate seedling survival in a North American temperate forest[J]. Forest Ecology and Management, 2021, 480: 118722. doi: 10.1016/j.foreco.2020.118722
[29] Bohlman S A. Species diversity of canopy versus understory trees in a neotropical forest: Implications for forest structure, function and monitoring[J]. Ecosystems, 2015, 18: 658-670. doi: 10.1007/s10021-015-9854-0
[30] Picard N, Bar-Hen A, Mortier F, et al. Understanding the dynamics of an undisturbed tropical rain forest from the spatial pattern of trees[J]. Journal of Ecology, 2009, 97(1): 97-108. doi: 10.1111/j.1365-2745.2008.01445.x
[31] Piao T F, Comita L S, Jin G Z, et al. Density dependence across multiple life stages in a temperate old-growth forest of northeast China[J]. Oecologia, 2013, 172: 207-217. doi: 10.1007/s00442-012-2481-y
[32] Omelko A, Ukhvatkina O, Zhmerenetsky A, et al. From young to adult trees: How spatial patterns of plants with different life strategies change during age development in an old-growth Korean pine-broadleaved forest[J]. Forest Ecology and Management, 2018, 411: 46-66. doi: 10.1016/j.foreco.2018.01.023
[33] Hao Z Q, Zhang J, Song B, et al. Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest[J]. Forest Ecology and Management, 2007, 252(1-3): 1-11. doi: 10.1016/j.foreco.2007.06.026
[34] Zhang J, Song B, Li B H, et al. Spatial patterns and associations of six congeneric species in an old-growth temperate forest[J]. Acta Oecologica, 2010, 36(1): 29-38. doi: 10.1016/j.actao.2009.09.005
[35] Torimaru T, Akada S, Ishida K, et al. Spatial associations among major tree species in a cool-temperate forest community under heterogeneous topography and canopy conditions[J]. Population Ecology, 2013, 55: 261-275. doi: 10.1007/s10144-013-0363-8
[36] 马志波, 黄清麟, 庄崇洋, 等. 典型中亚热带天然阔叶林群落各乔木亚层的空间格局与关联性[J]. 林业科学, 2017, 53(12):12-19. doi: 10.11707/j.1001-7488.20171202
[37] Pommerening A, Uria-Diez J. Do large forest trees tend towards high species mingling?[J] Ecological Informatics, 2017, 42: 139-147.
[38] Suzuki S N, Kachi N, Suzuki J I. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function[J]. Annals of Botany, 2008, 102(3): 435-441. doi: 10.1093/aob/mcn113
[39] Getzin S, Worbes M, Wiegand T, et al. Size dominance regulates tree spacing more than competition within height classes in tropical Cameroon[J]. Journal of Tropical Ecology, 2011, 27(1): 93-102. doi: 10.1017/S0266467410000453
[40] Ford E. Competition and stand structure in some even-aged plant monocultures[J]. Journal of Ecology, 1975, 311-333.