[1] Li J, Jia H, Sun P, et al. The WUSCHELa (PtoWUSa) is involved in developmental plasticity of adventitious root in poplar[J]. Genes, 2020, 11(2): 176. doi: 10.3390/genes11020176
[2] Van Der Graaff E, Laux T, Rensing S A. The WUS homeobox-containing (WOX) protein family[J]. Genome Biology, 2009, 10(12): 248. doi: 10.1186/gb-2009-10-12-248
[3] Liu B, Wang L, Zhang J, et al. WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation[J]. BMC Genomics, 2014, 15(1): 296. doi: 10.1186/1471-2164-15-296
[4] Haecker A, Gross-Hardt R, Geiges B, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana[J]. Development, 2004, 131(3): 657-668. doi: 10.1242/dev.00963
[5] Lin H, Niu L, Mchale N A, et al. Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants[J]. Proceedings of the National Academy of Sciences, 2013, 110(1): 366-371. doi: 10.1073/pnas.1215376110
[6] Li J, Zhang J, Jia H, et al. The WUSCHEL-related homeobox 5a (PtoWOX5a) is involved in adventitious root development in poplar[J]. Tree Physiology, 2018, 38(1): 139-153. doi: 10.1093/treephys/tpx118
[7] Dolzblasz A, Nardmann J, Clerici E, et al. Stem cell regulation by Arabidopsis WOX genes[J]. Molecular Plant, 2016, 9(7): 1028-1039. doi: 10.1016/j.molp.2016.04.007
[8] Jha P, Ochatt S J, Kumar V. WUSCHEL: a master regulator in plant growth signaling[J]. Plant Cell Reports, 2020, 39(4): 431-444. doi: 10.1007/s00299-020-02511-5
[9] Su Ying H, Zhou C, Li Ying J, et al. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences, 2020, 117(36): 22561-22571. doi: 10.1073/pnas.2015248117
[10] Zhang Y, Wu R, Qin G, et al. Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis[J]. Journal of Integrative Plant Biology, 2011, 53(6): 493-506. doi: 10.1111/j.1744-7909.2011.01054.x
[11] Ji J, Strable J, Shimizu R, et al. WOX4 promotes procambial development[J]. Plant Physiology, 2010, 152(3): 1346-1356. doi: 10.1104/pp.109.149641
[12] Suer S, Agusti J, Sanchez P, et al. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis[J]. The Plant Cell, 2011, 23(9): 3247-3259. doi: 10.1105/tpc.111.087874
[13] Denis E, Kbiri N, Mary V, et al. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis[J]. The Plant Journal, 2017, 90(3): 560-572. doi: 10.1111/tpj.13513
[14] 李 真, 王留强, 卢孟柱. 毛白杨PtoWOX11/12a对杨树扦插苗生长发育的影响[J]. 林业科学, 2017, 53(11):69-76. doi: 10.11707/j.1001-7488.20171108
[15] Hu X, Xu L. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis[J]. Plant Physiology, 2016, 172(4): 2363-2373. doi: 10.1104/pp.16.01067
[16] Zhou S, Jiang W, Long F, et al. Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem[J]. The Plant Cell, 2017, 29(5): 1088-1104. doi: 10.1105/tpc.16.00908
[17] Chen J, Zhang H-Q, Hu L-B, et al. Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide[J]. Chemosphere, 2013, 93(2): 283-293. doi: 10.1016/j.chemosphere.2013.04.079
[18] Liu J, Chen T, Zhang J, et al. Ginsenosides regulate adventitious root formation in Panax ginseng via a PgCLE45-PgWOX11 regulatory module[J]. Journal of Experimental Botany, 2020, 71(20): 6396-6407. doi: 10.1093/jxb/eraa375
[19] Wang L-Q, Wen S-S, Wang R, et al. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar[J]. Plant Biotechnology Journal, 2021, 19(11): 2249-2260. doi: 10.1111/pbi.13653
[20] Wang L Q, Li Z, Wen S S, et al. WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar[J]. Journal of Experimental Botany, 2020, 71(4): 1503-1513.
[21] Huang X, Chen S, Peng X, et al. An improved draft genome sequence of hybrid Populus alba  ×  Populus glandulosa[J]. Journal of Forestry Research, 2021, 32(4): 1663-1672. doi: 10.1007/s11676-020-01235-2
[22] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[23] Lv H, Zheng J, Wang T, et al. The maize d2003, a novel allele of VP8, is required for maize internode elongation[J]. Plant Molecular Biology, 2014, 84(3): 243-257. doi: 10.1007/s11103-013-0129-x
[24] Wang B, Smith S M, Li J. Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology, 2018, 69: 437-468. doi: 10.1146/annurev-arplant-042817-040422
[25] Zhang X, Hou X, Liu Y, et al. Maize brachytic2 (br2) suppresses the elongation of lower internodes for excessive auxin accumulation in the intercalary meristem region[J]. BMC Plant Biology, 2019, 19(1): 589. doi: 10.1186/s12870-019-2200-5