[1] BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216-234. doi: 10.1016/j.soilbio.2012.11.009
[2] 王 一, 刘彦春, 刘世荣. 暖温带森林土壤酶活性对增温的响应及其环境解析[J]. 林业科学研究, 2017, 30(1):117-124.
[3] 雷 蕾, 肖文发, 曾立雄, 等. 三峡库区2种马尾松混交林土壤团聚体酶活性分布特征[J]. 生态学报, 2020, 40(17):6179-6188.
[4] STEINWEG J M, DUKES J S, PAUL E A, et al. Microbial responses to multi-factor climate change: effects on soil enzymes[J]. Frontiers in Microbiology, 2013, 4(2): 146.
[5] SINSABAUGH R L, MOORHEAD D L. Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition[J]. Soil Biology and Biochemistry, 1994, 26(10): 1305-1311. doi: 10.1016/0038-0717(94)90211-9
[6] MOORHEAD D L, SINSABAUGH R L, HILL B H, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics[J]. Soil Biology and Biochemistry, 2016, 93: 1-7. doi: 10.1016/j.soilbio.2015.10.019
[7] SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264. doi: 10.1111/j.1461-0248.2008.01245.x
[8] LI P H, ZHOU G M, DU H Q, et al. Current and potential carbon stocks in Moso bamboo forests in China[J]. Journal of Environmental Management, 2015, 156: 89-96.
[9] 樊艳荣, 陈双林, 林 华, 等. 不同林下植被干扰措施对毛竹林下植物种群分布格局的影响[J]. 生物多样性, 2013, 21(6):709-714.
[10] 潘标志. 竹林化学防除芒萁骨为主杂草试验[J]. 福建林业科技, 2000, 27(2):76-78.
[11] 王 一, 任立宁. 两种芒箕覆盖度下毛竹林土壤团聚体的稳定性及生态化学计量特征比较研究[J]. 热带亚热带植物学报, 2023, 31(3):315-324.
[12] 任立宁, 刘世荣, 王 一, 等. 毛竹和林下植被芒萁凋落物分解特征研究[J]. 林业科学研究, 2018, 31(5):91-97.
[13] 任立宁, 刘世荣, 蔡春菊, 等. 川南地区毛竹和林下植被芒萁细根分解特征[J]. 生态学报, 2018, 38(21):7638-7646.
[14] 王 一, 栾军伟, 刘世荣, 等. 根系去除改变了毛竹林土壤酶活性对氮磷添加的响应[J]. 生态学报, 2023, 43(16):6515-6527.
[15] 彭春菊, 李 全, 顾鸿昊, 等. 模拟氮沉降及经营方式对毛竹林土壤酶活性的影响[J]. 应用生态学报, 2017, 28(2):423-429.
[16] 赵睿宇, 李正才, 王 斌, 等. 毛竹林地覆盖和翻耕对土壤酶活性及土壤养分含量的影响[J]. 林业科学研究, 2019, 32(5):67-73.
[17] 李 娜, 韩晓增, 尤孟阳, 等. 土壤团聚体与微生物相互作用研究[J]. 生态环境学报, 2013, 22(9):1625-1632.
[18] WANG R Z, DORODNIKOV M, YANG S, et al. Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland[J]. Soil Biology and Biochemistry, 2015, 81: 159-167. doi: 10.1016/j.soilbio.2014.11.015
[19] 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6):45-48.
[20] 漆良华, 蒋俊明, 唐森强, 等. 川南山丘区典型退耕竹林凋落物产量动态与养分归还[J]. 林业科学, 2013, 49(10):17-22.
[21] 袁星明, 朱宁华, 郭 耆, 等. 南亚热带不同人工林对土壤理化性质的影响及土壤质量评价[J]. 林业科学研究, 2022, 35(3):112-122.
[22] SAIYA-CORK K R, SINSABAUGHA R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315. doi: 10.1016/S0038-0717(02)00074-3
[23] BOSSIO D A, SCOW K M. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns[J]. Microbial Ecology, 1998, 35(3-4): 265-278.
[24] RUESS L, CHAMBERLAIN P M. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature[J]. Soil Biology and Biochemistry, 2010, 42(11): 1898-1910. doi: 10.1016/j.soilbio.2010.07.020
[25] OLSSON P A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil[J]. FEMS Microbiology Ecology, 1999, 29(4): 303-310. doi: 10.1111/j.1574-6941.1999.tb00621.x
[26] GUO L J, ZHANG Z S, WANG D D, et al. Effects of short-term conservation management practices on soil organic carbon fractions and microbial community composition under a rice-wheat rotation system[J]. Biology and Fertility of Soils, 2014, 51(1): 65-75.
[27] HUANG X M, LIU S R, WANG H, et al. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China[J]. Soil Biology and Biochemistry, 2014, 73: 42-48. doi: 10.1016/j.soilbio.2014.01.021
[28] YOU Y M, WANG J, HUANG X M, et al. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover[J]. Ecology and Evolution, 2014, 4(5): 633-647. doi: 10.1002/ece3.969
[29] 张 闯, 邹洪涛, 张心昱, 等. 氮添加对湿地松林土壤水解酶和氧化酶活性的影响[J]. 应用生态学报, 2016, 27(11):3427-3434.
[30] 许 焱, 伊力塔. 对芒萁的化感活性及化学成分薄层的探讨[J]. 现代园艺, 2019(4):11-12.
[31] 张 煜, 张 旭, 邱子豪, 等. 芒萁的生态学与资源利用研究进展[J]. 草业科学, 2021, 38(8):1525-1536.
[32] 杨 梅, 谭 玲, 叶绍明, 等. 桉树连作对土壤多酚氧化酶活性及酚类物质含量的影响[J]. 水土保持学报, 2012, 26(2):165-169 + 174.
[33] 任立宁. 川南毛竹林土壤有机碳和土壤微生物研究[D]. 北京: 中国林业科学研究院, 2018.
[34] 刘 宁, 何红波, 解宏图, 等. 土壤中木质素的研究进展[J]. 土壤通报, 2011, 42(4):991-996.
[35] GUGGENBERGER G, ELLIOTT E T, FREY S D, et al. Microbial contributions to the aggregation of a cultivated grassland soil amended with starch[J]. Soil Biology and Biochemistry, 1999, 31(3): 407-419. doi: 10.1016/S0038-0717(98)00143-6
[36] SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795-798. doi: 10.1038/nature08632
[37] WANG X, YOST R S, LINQUIST B A. Soil aggregate size affects phosphorus desorption from highly weathered soil and plant growth[J]. Soil Science Society of America Journal, 2001, 65(1): 139-146. doi: 10.2136/sssaj2001.651139x
[38] 牛利敏, 秦 华, 徐秋芳, 等. 长期种植毛竹林土壤丛枝菌根真菌群落演变趋势[J]. 土壤学报, 2017, 54(3):722-734.
[39] COLPAERT J V, LAERE A V. A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter[J]. New Phytologist, 1996, 134(1): 133-141. doi: 10.1111/j.1469-8137.1996.tb01153.x
[40] LUO G W, SUN B, LI L, et al. Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD- and phoC-harboring functional microbial populations[J]. Soil Biology and Biochemistry, 2019, 139: 107632. doi: 10.1016/j.soilbio.2019.107632