[1] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J]. New phytologist, 2003, 157(3): 423-447. doi: 10.1046/j.1469-8137.2003.00695.x
[2] LAMBERS H, FINNEGAN P M, LALIBERTÉ E, et al. Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops[J] Plant Physiology, 2011, 156(3): 1058-1066.
[3] BÜNEMANN E K. Assessment of gross and net mineralization rates of soil organic phosphorus–A review[J]. Soil Biology and Biochemistry, 2015, 89: 82-98. doi: 10.1016/j.soilbio.2015.06.026
[4] BALEMI T, NEGISHO K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review[J]. Journal of soil science and plant nutrition, 2012, 12(3): 547-562.
[5] GONG H, MENG F, WANG G, et al. Toward the sustainable use of mineral phosphorus fertilizers for crop production in China: From primary resource demand to final agricultural use[J]. Science of The Total Environment, 2022, 804: 150183. doi: 10.1016/j.scitotenv.2021.150183
[6] 王永壮, 陈 欣, 史 奕, 等. 低分子量有机酸对土壤磷活化及其机制研究进展[J]. 生态学杂志, 2018, 37(7):2189-2198.
[7] ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522-537. doi: 10.1016/j.scitotenv.2017.08.095
[8] VENEKLAAS E J, LAMBERS H, BRAGG J, et al. Opportunities for improving phosphorus–use efficiency in crop plants[J]. New phytologist, 2012, 195(2): 306-320. doi: 10.1111/j.1469-8137.2012.04190.x
[9] 田 江, 梁翠月, 陆 星, 等. 根系分泌物调控植物适应低磷胁迫的机制[J]. 华南农业大学学报, 2019, 40(5):175-185.
[10] CHEN Y, BONKOWSKI M, SHEN Y, et al. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants[J]. Microbiome, 2020, 8(1): 1-17. doi: 10.1186/s40168-019-0777-4
[11] JIN K, WHITE P J, WHALLEY W R, et al. Shaping an optimal soil by root–soil interaction[J]. Trends in Plant Science, 2017, 22(10): 823-829. doi: 10.1016/j.tplants.2017.07.008
[12] BHATTACHARYYA P, DAS S, ADHYA T. Root exudates of rice cultivars affect rhizospheric phosphorus dynamics in soils with different phosphorus statuses[J]. Communications in soil science and plant analysis, 2013, 44(10): 1643-1658. doi: 10.1080/00103624.2013.769562
[13] 杨松花, 石贵阳, 王晶琴, 等. 低磷胁迫下大豆根系分泌物对土壤中难溶性磷的影响[J]. 浙江农业学报, 2023, 35(6):1396-1406.
[14] YANG F, QU J, HUANG X, et al. Phosphorus deficiency leads to the loosening of activated sludge: The role of exopolysaccharides in aggregation[J]. Chemosphere, 2022, 290: 133385. doi: 10.1016/j.chemosphere.2021.133385
[15] DUAN X, YU X, LI Z, et al. Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands[J]. Soil Biology and Biochemistry, 2020, 149: 107949. doi: 10.1016/j.soilbio.2020.107949
[16] DUFF S M, SARATH G, PLAXTON W C. The role of acid phosphatases in plant phosphorus metabolism[J]. Physiologia plantarum, 1994, 90(4): 791-800. doi: 10.1111/j.1399-3054.1994.tb02539.x
[17] LIU D. Root developmental responses to phosphorus nutrition[J]. Journal of Integrative Plant Biology, 2021, 63(6): 1065-1090. doi: 10.1111/jipb.13090
[18] LIU P D, XUE Y B, CHEN Z J, et al. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes[J]. Journal of Experimental Botany, 2016, 67(14): 4141-4154. doi: 10.1093/jxb/erw190
[19] WANG L, LIU D. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants[J]. Plant science, 2018, 271: 108-116. doi: 10.1016/j.plantsci.2018.03.013
[20] 陈隆升, 陈永忠, 彭邵锋, 等. 油茶对低磷胁迫的生理生化效应研究[J]. 林业科学研究, 2010, 23(5):782-786.
[21] LI S M, LI L, ZHANG F, et al. Acid phosphatase role in chickpea/maize intercropping[J]. Annals of Botany, 2004, 94(2): 297-303. doi: 10.1093/aob/mch140
[22] LIANG C, TIAN J, LAM H-M, et al. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization[J]. Plant physiology, 2010, 152(2): 854-865. doi: 10.1104/pp.109.147918
[23] WANG L, LI Z, QIAN W, et al. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation[J]. Plant Physiology, 2011, 157(3): 1283-1299. doi: 10.1104/pp.111.183723
[24] WU W, LIN Y, LIU P, et al. Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots[J]. Journal of Experimental Botany, 2018, 69(3): 603-617. doi: 10.1093/jxb/erx441
[25] NAKAZATO H, OKAMOTO T, NISHIKOORI M, et al. The glycosylphosphatidylinositol-anchored phosphatase from Spirodela oligorrhiza is a purple acid phosphatase[J]. Plant physiology, 1998, 118(3): 1015-1020. doi: 10.1104/pp.118.3.1015
[26] 刘攀道, 黄 睿, 许文茸, 等. 植物紫色酸性磷酸酶的研究进展[J]. 热带作物学报, 2019, 40(2):410-416.
[27] 周梦岩, 赵铭臻, 李亚超, 等. 杉木紫色酸性磷酸酶基因ClPAP18b的克隆及表达分析[J]. 植物营养与肥料学报, 2021, 27(7):1234-1246.
[28] ANTONYUK S V, OLCZAK M, OLCZAK T, et al. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold[J]. International Union of Crystallography, 2014, 1(2): 101-109. doi: 10.1107/S205225251400400X
[29] DURMUS A, EICKEN C, HORST SIFT B, et al. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas) metal content and spectroscopic characterization[J]. European Journal of Biochemistry, 1999, 260(3): 709-716. doi: 10.1046/j.1432-1327.1999.00230.x
[30] LU L, QIU W, GAO W, et al. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus[J]. Plant, Cell & Environment, 2016, 39(10): 2247-2259.
[31] LIU P, CAI Z, CHEN Z, et al. A root‐associated purple acid phosphatase, SgPAP23, mediates extracellular phytate‐P utilization in Stylosanthes guianensis[J]. Plant, Cell & Environment, 2018, 41(12): 2821-2834.
[32] PEÑA A. A comprehensive review of recent research concerning the role of low molecular weight organic acids on the fate of organic pollutants in soil[J]. Journal of Hazardous Materials, 2022, 434: 128875. doi: 10.1016/j.jhazmat.2022.128875
[33] 叶思诚, 谭晓风, 袁 军, 等. 油茶根系及分泌物中有机酸的HPLC法测定[J]. 南京林业大学学报(自然科学版), 2013, 37(6):59-63.
[34] 庞 丽, 张 一, 周志春, 等. 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J]. 植物生态学报, 2014, 38(1):27-35.
[35] ANDERSSON K O, TIGHE M K, GUPPY C N, et al. Incremental acidification reveals phosphorus release dynamics in alkaline vertic soils[J]. Geoderma, 2015, 259: 35-44.
[36] STRÖM L, OWEN A G, GODBOLD D L, et al. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling[J]. Soil Biology and Biochemistry, 2005, 37(11): 2046-2054. doi: 10.1016/j.soilbio.2005.03.009
[37] LAN M, COMERFORD N, FOX T. Organic anions' effect on phosphorus release from spodic horizons[J]. Soil Science Society of America Journal, 1995, 59(6): 1745-1749. doi: 10.2136/sssaj1995.03615995005900060034x
[38] 张乃于, 闫双堆, 李 娟, 等. 低分子量有机酸对土壤磷组分影响的Meta分析[J]. 植物营养与肥料学报, 2019, 25(12):2076-2083.
[39] 张金昕, 高良敏, 庞振东, 等. 低分子有机酸对林地土壤磷释放及活化影响[J]. 科学技术与工程, 2022, 22(24):10470-10477.
[40] 陈立新, 梁薇薇, 段文标, 等. 3种低分子质量有机酸对温带典型林型土壤无机磷组分的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(4):75-82.
[41] TAGHIPOUR M, JALALI M. Effect of low-molecular-weight organic acids on kinetics release and fractionation of phosphorus in some calcareous soils of western Iran[J]. Environmental Monitoring and Assessment, 2013, 185: 5471-5482. doi: 10.1007/s10661-012-2960-y
[42] KREMER C, TORRES J, BIANCHI A, et al. Myo-inositol hexakisphosphate: Coordinative versatility of a natural product[J]. Coordination Chemistry Reviews, 2020, 419: 213403. doi: 10.1016/j.ccr.2020.213403
[43] GILES C D, HSU P C L, RICHARDSON A E, et al. Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing Pseudomonas sp[J]. Soil Biology and Biochemistry, 2014, 68: 263-269. doi: 10.1016/j.soilbio.2013.09.026
[44] WANG Y, CHEN X, WHALEN J K, et al. Kinetics of inorganic and organic phosphorus release influenced by low molecular weight organic acids in calcareous, neutral and acidic soils[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(4): 555-566. doi: 10.1002/jpln.201500047
[45] WEI L, CHEN C, XU Z. Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils[J]. Biology and Fertility of Soils, 2010, 46: 765-769. doi: 10.1007/s00374-010-0464-x
[46] TRIPATHI K. Effect of organic acid on phosphorus-use efficiency by clusterbean (Cyamopsis tetragonoloba) in arid soil of Rajasthan[J]. Indian journal of agricultural science, 2005, 75(10): 651-653.
[47] 廖新荣, 梁嘉伟, 梁 善, 等. 不同种类小分子有机酸对砖红壤磷素形态转化的影响[J]. 华南农业大学学报, 2017, 38(5):30-35.
[48] ZHU H, BING H, WU Y, et al. Low molecular weight organic acids regulate soil phosphorus availability in the soils of subalpine forests, eastern Tibetan Plateau[J]. Catena, 2021, 203: 105328. doi: 10.1016/j.catena.2021.105328
[49] 蔡银美, 赵庆霞, 张成富. 低磷下植物根系分泌物对土壤磷转化的影响研究进展[J]. 东北农业大学学报, 2021, 52(2):79-86.
[50] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3):298-310.
[51] 陆玉芳, 施卫明. 根际化学信号物质与土壤养分转化[J]. 生物技术通报, 2020, 36(9):14-24.
[52] SMITH S E, READ D J. Mycorrhizal symbiosis[M]. Academic press, 2010.
[53] SMITH S E, SMITH F A, JAKOBSEN I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses[J]. Plant physiology, 2003, 133(1): 16-20. doi: 10.1104/pp.103.024380
[54] BERDENI D, COTTON T E A, DANIELL T J, et al. The effects of arbuscular mycorrhizal fungal colonisation on nutrient status, growth, productivity, and canker resistance of apple (Malus pumila)[J]. Frontiers in microbiology, 2018, 9: 1461. doi: 10.3389/fmicb.2018.01461
[55] 林宇岚, 王 琳, 楼玫娟, 等. AM真菌与有机磷配施对油茶光合特性的影响[J]. 江西农业大学学报, 2021, 43(1):136-143.
[56] COOK C, WHICHARD L P, TURNER B, et al. Germination of witchweed (Striga lutea Lour. ): isolation and properties of a potent stimulant[J]. Science, 1966, 154(3753): 1189-1190. doi: 10.1126/science.154.3753.1189
[57] FIORILLI V, VALLINO M, BISELLI C, et al. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi[J]. Frontiers in Plant Science, 2015, 6: 636.
[58] LÓPEZ-RÁEZ J A, CHARNIKHOVA T, GÓMEZ-ROLDÁN V, et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation[J]. New Phytologist, 2008, 178(4): 863-874. doi: 10.1111/j.1469-8137.2008.02406.x
[59] BALZERGUE C, PUECH-PAGÈS V, BÉCARD G, et al. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events[J]. Journal of experimental botany, 2011, 62(3): 1049-1060. doi: 10.1093/jxb/erq335
[60] BREUILLIN F, SCHRAMM J, HAJIREZAEI M, et al. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning[J]. The Plant Journal, 2010, 64(6): 1002-1017. doi: 10.1111/j.1365-313X.2010.04385.x
[61] TIAN B, PEI Y, HUANG W, et al. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant[J]. The ISME journal, 2021, 15(7): 1919-1930. doi: 10.1038/s41396-021-00894-1
[62] XING Z, MA T, WU L, et al. Foliar herbivory modifies arbuscular mycorrhizal fungal colonization likely through altering root flavonoids[J]. Functional Ecology, 2023.
[63] 黄雨轩, 林宇岚, 张林平, 等. AM 真菌和无机磷对油茶苗磷吸收和培养土壤磷组分的影响[J]. 林业科学研究, 2022, 35(5):33-41.
[64] HUANG Y, LIN Y, ZHANG L, et al. Effects of Interaction between Claroideogolmus etuicatum and Bacillus aryabhattai on the Utilization of Organic Phosphorus in Camellia oleifera Abel[J]. Journal of Fungi, 2023, 9(10): 977. doi: 10.3390/jof9100977
[65] 薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报, 2019, 33(6):10-20.
[66] SCHNEPF A, JONES D, ROOSE T. Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design[J]. Bulletin of Mathematical Biology, 2011, 73: 2175-2200. doi: 10.1007/s11538-010-9617-1
[67] XIE X, WENG B, CAI B, et al. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil[J]. Applied Soil Ecology, 2014, 75: 162-171. doi: 10.1016/j.apsoil.2013.11.009
[68] WU F, LI Z, LIN Y, et al. Effects of Funneliformis mosseae on the utilization of organic phosphorus in Camellia oleifera Abel[J]. Canadian Journal of Microbiology, 2021, 67(5): 349-357. doi: 10.1139/cjm-2020-0227
[69] LIU Y, MUHAMMAD I, ALLAH D, et al. Response of growth, antioxidant enzymes and root exudates production towards As stress in Pteris vittata and in Astragalus sinicus colonized by arbuscular mycorrhizal fungi[J]. Environmental Science and Pollution Research, 2020, 27: 2340-2352. doi: 10.1007/s11356-019-06785-5
[70] MA J, WANG W, YANG J, et al. Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize[J]. BMC Plant Biology, 2022, 22(1): 64. doi: 10.1186/s12870-021-03370-2
[71] ZHANG L, XU M, LIU Y, et al. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J]. New Phytologist, 2016, 210(3): 1022-1032. doi: 10.1111/nph.13838
[72] BHARADWAJ D P, ALSTRÖM S, LUNDQUIST P-O. Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions[J]. Mycorrhiza, 2012, 22: 437-447. doi: 10.1007/s00572-011-0418-7
[73] EFTHYMIOU A, GRØNLUND M, MÜLLER-STÖVER D S, et al. Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains[J]. Soil Biology and Biochemistry, 2018, 116: 139-147. doi: 10.1016/j.soilbio.2017.10.006
[74] 孙宁康, 江飞焰, 张 林, 等. 丛枝菌根真菌 Rhizophagus irregularis 菌丝分泌物可诱导解磷细菌 Rahnella aquatilis 向菌丝移动[J]. 科学通报, 2021, 66(32):4157-4168.
[75] ZHANG L, FAN J, DING X, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J]. Soil Biology and Biochemistry, 2014, 74: 177-183. doi: 10.1016/j.soilbio.2014.03.004
[76] 陶冬雪, 高英志. 土壤解磷微生物促进植物磷素吸收策略研究进展[J]. 生态学报, 2023, 43(11):4390-4399.
[77] DINESH R, SRINIVASAN V, PRAVEENA R, et al. Exploring the potential of P solubilizing rhizobacteria for enhanced yield and quality in turmeric (Curcuma longa L. )[J]. Industrial Crops and Products, 2022, 189: 115826. doi: 10.1016/j.indcrop.2022.115826
[78] YU X, LIU X, ZHU T H, et al. Co-inoculation with phosphate-solubilzing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut[J]. European Journal of Soil Biology, 2012, 50: 112-117. doi: 10.1016/j.ejsobi.2012.01.004
[79] 韩玲玲. 黄顶菊根系分泌物对芽孢杆菌功能的影响及其主效化感物质的鉴定[D]. 保定: 河北大学, 2021.
[80] 王雪菲. 解磷细菌 YL6 在小白菜植株中的定殖及促生机制研究[D]. 咸阳: 西北农林科技大学, 2019.
[81] TAN S, YANG C, MEI X, et al. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5[J]. Applied Soil Ecology, 2013, 64: 15-22. doi: 10.1016/j.apsoil.2012.10.011
[82] KHAN M S, ZAIDI A, AHMAD E. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms[J]. Phosphate solubilizing microorganisms: principles and application of microphos technology, 2014: 31-62.
[83] WANG Y, LUO D, XIONG Z, et al. Changes in rhizosphere phosphorus fractions and phosphate-mineralizing microbial populations in acid soil as influenced by organic acid exudation[J]. Soil and Tillage Research, 2023, 225: 105543. doi: 10.1016/j.still.2022.105543
[84] LONG X E, YAO H, HUANG Y, et al. Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil[J]. Soil Biology and Biochemistry, 2018, 118: 103-114. doi: 10.1016/j.soilbio.2017.12.014
[85] 董丽红, 郭庆港, 张晓云, 等. 棉花根系分泌物对枯草芽胞杆菌 NCD-2 生物膜形成和根际定殖的影响[J]. 植物病理学报, 2015, 45(5):541-547.
[86] LAHEURTE F, BERTHELIN J. Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus[J]. Plant and Soil, 1988, 105: 11-17. doi: 10.1007/BF02371137
[87] 魏 畅, 戚秀秀, 吴 越, 等. 砂质潮土高效溶磷菌的筛选鉴定、条件优化及应用[J]. 生物技术通报, 2021, 37(4):85-95.
[88] 王玉书. 外源物质对无机磷细菌生长和溶磷作用的影响[D]. 重庆: 西南大学, 2018.
[89] PANTIGOSO H A, MANTER D K, FONTE S J, et al. Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria[J]. Scientific Reports, 2023, 13(1): 4050. doi: 10.1038/s41598-023-30915-2
[90] 郭婉玑, 张子良, 刘 庆, 等. 根系分泌物收集技术研究进展[J]. 应用生态学报, 2019, 30(11):3951-3962.
[91] 孙晨瑜, 曾燕红, 马俊卿, 等. 丛枝菌根真菌对黄花蒿生长和根系分泌物化学组成的影响[J]. 热带作物学报, 2020, 41(9):1831-1837.
[92] PHILLIPS R P, ERLITZ Y, BIER R, et al. New approach for capturing soluble root exudates in forest soils[J]. Functional Ecology, 2008, 22(6): 990-999. doi: 10.1111/j.1365-2435.2008.01495.x