[1] RAO Y, PENG T, XUE S W. Mechanisms of plant saline-alkaline tolerance[J]. Journal of Plant Physiology, 2023, 281: 153916. doi: 10.1016/j.jplph.2023.153916
[2] HARFOUCHE A, MEILAN R, ALTMAN A. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement[J]. Tree Physiology, 2014, 34(11): 1181-1198. doi: 10.1093/treephys/tpu012
[3] LIU C H, LU R J, GUO G M, et al. Transcriptome analysis reveals translational regulation in barley microspore-derived embryogenic callus under salt stress[J]. Plant Cell Reports, 2016, 35(8): 1719-1728. doi: 10.1007/s00299-016-1986-y
[4] MENG F J, LUO Q X, WANG Q Y, et al. Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L. )[J]. Scientific Reports, 2016, 6: 23098. doi: 10.1038/srep23098
[5] ZELM E V, ZHANG Y, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71(1): 403-433. doi: 10.1146/annurev-arplant-050718-100005
[6] 杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5):837-845.
[7] 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1):10-27. doi: 10.11766/trxb202110270578
[8] 杨 升, 刘正祥, 张华新, 等. 3个树种苗期耐盐性综合评价及指标筛选[J]. 林业科学, 2013, 49(1):91-98. doi: 10.11707/j.1001-7488.20130114
[9] 余如刚, 张 迪, 余心悦, 等. 13种小白菜苗期耐盐比较分析及耐性指标筛选[J]. 云南农业大学学报(自然科学版), 2022, 37(1):24-31. doi: 10.12101/j.issn.1004-390X(n).202105001
[10] YU R G, WANG G L, YU X Y, et al. Assessing alfalfa (Medicago sativa L. ) tolerance to salinity at seedling stage and screening of the salinity tolerance traits[J]. Plant Biology, 2021, 23(4): 664-674. doi: 10.1111/plb.13271
[11] AFSAR S, BIBI G, AHMAD R, et al. Evaluation of salt tolerance in Eruca sativa accessions based on morpho-physiological traits[J]. Peer J, 2020, 8(1): e9749. doi: 10.7717/peerj.9749
[12] LI W H, ZHANG H Z, ZENG Y L, et al. A salt tolerance evaluation method for sunflower (Helianthus annuus L. ) at the seed germination stage[J]. Scientific Reports, 2020, 10(1): 10626. doi: 10.1038/s41598-020-67210-3
[13] 甘红豪, 赵 帅, 杨泽坤, 等. 刺槐幼苗对NaCl胁迫的生理生化响应[J]. 林业科学研究, 2020, 33(4):75-82. doi: 10.13275/j.cnki.lykxyj.2020.04.010
[14] 甘红豪, 赵 帅, 高明远, 等. 外源水杨酸对NaCl胁迫下白榆幼苗光合作用及离子分配的影响[J]. 西北植物学报, 2020, 40(3):478-489. doi: 10.7606/j.issn.1000-4025.2020.03.0478
[15] 何维明, 马风云. 水分梯度对沙地柏幼苗荧光特征和气体交换的影响[J]. 植物生态学报, 2000, 24(5):630-634.
[16] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
[17] WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144(3): 307-313. doi: 10.1016/S0176-1617(11)81192-2
[18] TAMÁS L, DUDÍKOVÁ J, ĎURČEKOVÁ K, et al. Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium[J]. Journal of Plant Physiology, 2008, 165(11): 1193-1203. doi: 10.1016/j.jplph.2007.08.013
[19] LUO Z B, CALFAPIETRA C, SCARASCIA-MUGNOZZA G, et al. Carbon-based secondary metabolites and internal nitrogen pools in Populus nigra under free air CO2 enrichment (FACE) and nitrogen fertilisation[J]. Plant and Soil, 2008, 304(1): 45-57. doi: 10.1007/s11104-007-9518-8
[20] POLLE A, CHAKRABARTI K, SCHÜRMANN W, et al. Composition and properties of hydrogen peroxide decomposing systems in extracellular and total extracts from needles of Norway Spruce (Picea abies L., Karst. )[J]. Plant Physiology, 1990, 94(1): 312-319. doi: 10.1104/pp.94.1.312
[21] WANG W C, PANG J Y, ZHANG F H, et al. Integrated transcriptomics and metabolomics analysis to characterize alkali stress responses in canola (Brassica napus L. )[J]. Plant Physiology and Biochemistry, 2021, 166: 605-620. doi: 10.1016/j.plaphy.2021.06.021
[22] ZHOU Y, TANG N Y, HUANG L J, et al. Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq[J]. International Journal of Molecular Sciences, 2018, 19(1): 252. doi: 10.3390/ijms19010252
[23] 燕丽萍, 吴德军, 王因花, 等. 4种白蜡的耐盐性响应特征与综合评价[J]. 西北植物学报, 2019, 39(7):1270-1278. doi: 10.7606/j.issn.1000-4025.2019.07.1270
[24] MANSOUR M M F, SALAMA K H A. Cellular basis of salinity tolerance in plants[J]. Environmental and Experimental Botany, 2004, 52(2): 113-122. doi: 10.1016/j.envexpbot.2004.01.009
[25] 高明远, 甘红豪, 李清河, 等. 外源水杨酸对盐胁迫下白榆生理特性的影响[J]. 林业科学研究, 2018, 31(6):138-143. doi: 10.13275/j.cnki.lykxyj.2018.06.019
[26] ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. doi: 10.1016/j.cell.2016.08.029
[27] ZHU J F, YANG X Y, LIU Z X, et al. Identification and target prediction of microRNAs in Ulmus pumila L. seedling roots under salt stress by high-throughput sequencing[J]. Forests, 2016, 7(12): 318. doi: 10.3390/f7120318
[28] IQBAL N, UMAR S, KHAN N A, et al. A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism[J]. Environmental and Experimental Botany, 2014, 100: 34-42. doi: 10.1016/j.envexpbot.2013.12.006
[29] LI H Y, TANG X Q, YANG X Y, et al. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress[J]. Scientific Reports, 2021, 11(1): 12878. doi: 10.1038/s41598-021-92317-6
[30] TALBI ZRIBI O, BARHOUMI Z, KOUAS S, et al. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability[J]. Journal of Plant Physiology, 2015, 189: 1-10. doi: 10.1016/j.jplph.2015.08.007
[31] TANG H L, NIU L, WEI J, et al. Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition[J]. Frontiers in Plant Science, 2019, 10: 856. doi: 10.3389/fpls.2019.00856
[32] 苏 丹, 李红丽, 董 智, 等. 盐胁迫对白榆无性系抗氧化酶活性及丙二醛的影响[J]. 中国水土保持科学, 2016, 14(2):9-16. doi: 10.16843/j.sswc.2016.02.002
[33] 朱金方, 刘京涛, 陆兆华, 等. 盐胁迫对中国柽柳幼苗生理特性的影响[J]. 生态学报, 2015, 35(15):5140-5146. doi: 10.5846/stxb201312182981
[34] YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist, 2018, 217(2): 523-539. doi: 10.1111/nph.14920
[35] 罗 达, 史彦江, 宋锋惠. 平欧杂种榛幼苗对盐胁迫的生理响应及耐盐性评价[J]. 生态学杂志, 2023, 42(1):1-8. doi: 10.13292/j.1000-4890.202212.015