[1] 张建锋, 张旭东, 周金星, 等. 世界盐碱地资源及其改良利用的基本措施[J]. 水土保持研究, 2005, 12(6):32-34.
[2] 范国强, 翟晓巧, 毕会涛, 等. 金丝楸的离体培养和植株再生[J]. 植物生理学通讯, 2002, 38(4):359.
[3] 辛建华, 许庆标, 刘建军, 等. 不同树龄楸树种质资源的嫁接成活影响因素[J]. 山东林业科技, 2021, 51(4):71-74. doi: 10.3969/j.issn.1002-2724.2021.04.016
[4] 张 蕊, 石 娜, 孙玲凌, 等. 楸树无糖组织培养快繁技术初探[J]. 江苏农业科学, 2022, 50(1):45-50.
[5] 王改萍, 王良桂, 王晓聪, 等. 楸树嫩枝扦插生根发育及根系特征分析[J]. 南京林业大学学报:自然科学版, 2020, 44(6):94-102.
[6] 岑云昕, 刘 佳, 陈发菊, 等. 农杆菌介导的楸树遗传转化体系[J]. 林业科学, 2021, 57(8):195-204. doi: 10.11707/j.1001-7488.20210820
[7] 杨丹丹, 马玲玲, 李 亚, 等. 楸树EST-SSR标记开发及种质资源的遗传多样性分析[J]. 分子植物育种, 2020, 18(4):1216-1223.
[8] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechn, 2011, 29(7): 644-652. doi: 10.1038/nbt.1883
[9] Bahieldin A, Atef A, Sabir J S M. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress[J]. Comptes Rendus Biologies, 2015, 338(5): 285-297. doi: 10.1016/j.crvi.2015.03.010
[10] Wang W S, Zhao X Q, Li M, et al. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling[J]. Journal of Experimental Botany, 2016, 67(1): 405-419. doi: 10.1093/jxb/erv476
[11] 董 明, 再吐尼古丽·库尔班, 吕 芃, 等. 高粱苗期耐盐性转录组分析和基因挖掘[J]. 中国农业科学, 2019, 52(22):3987-4001. doi: 10.3864/j.issn.0578-1752.2019.22.005
[12] 毛伟兵, 陈发菊, 王长兰, 等. 楸树雄性不育花芽转录组测序及分析[J]. 林业科学, 2017, 53(6):141-150. doi: 10.11707/j.1001-7488.20170617
[13] 张恩亮, 马玲玲, 杨如同, 等. IBA诱导楸树嫩枝扦插不定根发育的转录组分析[J]. 林业科学, 2018, 54(5):48-61. doi: 10.11707/j.1001-7488.20180506
[14] 张 丽. 平欧杂种榛抗盐碱生理机制研究及其耐盐性评价[D]. 中国林业科学研究院, 2015.
[15] Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 323-338. doi: 10.1186/1471-2105-12-323
[16] Marioni J C, Mason C E, Mane S M, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays[J]. Genome research, 2008, 18(9): 1509-1517.
[17] Jin J, Tian F, Yang D C, et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants[J]. Nucleic acids research, 2017, 45(D1): D1040-D1045. doi: 10.1093/nar/gkw982
[18] Vicente O, Boscaiu M, Naranjo M A, et al. Responses to salt stress in the halophyte Plantago cyassifolia (Plantaginaceae)[J]. Journal of Arid Environments, 2004, 58(4): 463-481. doi: 10.1016/j.jaridenv.2003.12.003
[19] Yang C W, Chong J N, Li C Y, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J]. Plant Soil, 2007, 294(12): 263-276.
[20] Nasr S M H, Parsakhoo A, Naghavi H, et al. Effect of salt stress on germination and seedling growth of Prosopis juliflora (Sw.)[J]. New Forests, 2012, 43(1): 45-55. doi: 10.1007/s11056-011-9265-9
[21] Megdiche W, Amor N B, Debez A, et al. Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage[J]. Acta Physiol Plant, 2007, 29(4): 375-384. doi: 10.1007/s11738-007-0047-0
[22] 李子英, 丛日春, 杨庆山, 等. 盐碱胁迫对柳树幼苗生长和渗透调节物质含量的影响[J]. 生态学报, 2017, 37(24):8511-8517.
[23] Anower M R, Peel M D, Mott I W, et al. Physiological processes associated with salinity tolerance in an alfalfa half-sib family[J]. Journal of Agronomy and Crop Science, 2017, 203(6): 506-518. doi: 10.1111/jac.12221
[24] Li R L, Shi F C, Fukuda K, et al. Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.)[J]. Soil Science and Plant Nutrition, 2010, 56(5): 725-733. doi: 10.1111/j.1747-0765.2010.00506.x
[25] Yang C W, Xu H H, Wang L L, et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants[J]. Photosynthetica, 2009, 47(1): 79-86. doi: 10.1007/s11099-009-0013-8
[26] Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Environmental and Experimental Botany, 2003, 49(1): 69-76. doi: 10.1016/S0098-8472(02)00058-8
[27] 孙海菁, 王树凤, 陈益泰. 盐胁迫对6个树种的生长及生理指标的影响[J]. 林业科学研究, 2009, 22(3):315-324. doi: 10.3321/j.issn:1001-1498.2009.03.002
[28] 邓敏捷, 张晓申, 范国强, 等. 四倍体泡桐对盐胁迫生理响应的差异[J]. 中南林业科技大学学报, 2013, 33(11):42-46. doi: 10.3969/j.issn.1673-923X.2013.11.008
[29] Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves[J]. Scientia Horticulturae, 2004, 103(1): 93-99. doi: 10.1016/j.scienta.2004.04.009
[30] Sicilia A, Santoro D F, Testa G, et al. Transcriptional response of giant reed (Arundo donax L.) low ecotype to long-term salt stress by unigene-based RNAseq[J]. Phytochemistry, 2020, 177: 112436. doi: 10.1016/j.phytochem.2020.112436
[31] 李 红, 李 波, 邬婷婷, 等. 紫花苜蓿耐苏打盐碱相关基因的转录组学分析[J]. 草地学报, 2019, 27(4):848-859.
[32] 张 瑞, 张夏燚, 赵 婷, 等. 基于转录组分析垂丝海棠响应盐碱胁迫的分子机制[J]. 园艺学报, 2022, 49(2):237-251.
[33] Khan SA, Li MZ, Wang SM, et al. Revisiting the role of plant transcription factors in the battle against abiotic stress[J]. International Journal of Molecular Sciences, 2018, 19(6): 1634-1663. doi: 10.3390/ijms19061634
[34] Erpen L, Devi HS, Grosser JW, et al. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants[J]. Plant Cell Tiss Organ Cult, 2018, 132(1): 1-25. doi: 10.1007/s11240-017-1320-6
[35] Li W, Pang S, Lu Z, et al. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants, 2020, 9(11): 1515-1530. doi: 10.3390/plants9111515
[36] Li H, Gao Y, Xu H, et al. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis[J]. Plant Growth Regul, 2013, 70(3): 207-216. doi: 10.1007/s10725-013-9792-9
[37] Song Y S, Li J L, Sui Y, et al. The sweet Sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis[J]. Plant Molecular Biology, 2020, 102(6): 603-614. doi: 10.1007/s11103-020-00966-4
[38] Zhu H, Jiang Y, Guo Y, et al. A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut[J]. Plant Physiology and Biochemistry, 2021, 160: 175-183. doi: 10.1016/j.plaphy.2021.01.014
[39] Puranik S, Sahu P P, Srivastava P S, et al. NAC proteins: Regulation and role in stress tolerance[J]. Trends in Plant Science, 2012, 17(6): 369-381. doi: 10.1016/j.tplants.2012.02.004
[40] Hong Y, Zhang H, Huang L, et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Frontiers in Plant Science, 2016, 7(4): 1-19.
[41] Mao X and Chen S. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis[J]. PLoS ONE, 2014, 9(1): e84359-84374. doi: 10.1371/journal.pone.0084359
[42] Li S, Wang N, Ji D, et al. A GmSIN1/GmNCED3s/GmRbohBs Feed-forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress[J]. The Plant Cell, 2019, 31: 2107-2130. doi: 10.1105/tpc.18.00662
[43] Banerjee A, Roychoudhury A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress[J]. Protoplasma, 2015, 254(1): 1-14.
[44] Liang C, Meng Z, Meng Z, et al. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.)[J]. Scientific Reports, 2016, 6: 35040-35054.
[45] Wang C, Lu G, Hao Y, et al. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton[J]. Planta, 2017, 246(6): 1-19.
[46] Yang Y, Yu T F, Ma J, et al. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants[J]. International Journal of Molecular Sciences, 2020, 21(2): 670-689. doi: 10.3390/ijms21020670
[47] Li J L, Han G L, Sun C F, et al. Research advances of MYB transcription factors in plant stress resistance and breeding[J]. Plant Signaling & Behavior, 2019, 14(8): 1-9.
[48] Li B, Fan R, Guo S, et al. The Arabidopsis MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynthesis[J]. Environmental and Experimental Botany, 2019, 166(2): 807-834.
[49] Wang F, Ren X, Zhang F, et al. A R2R3-type MYB transcription factor gene from soybean, GmMYB12, is involved in flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Biotechnology Reports, 2019, 13: 219-233. doi: 10.1007/s11816-019-00530-7
[50] Chen H H, Lai L Y, Li L X, et al. AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling[J]. International Journal of Molecular Sciences, 2020, 21(16): 5727-5742. doi: 10.3390/ijms21165727
[51] Yang T R, Yao S F, Hao L, et al. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway[J]. Plant Cell Reports, 2016, 35(11): 2309-2323. doi: 10.1007/s00299-016-2036-5
[52] Chen H C, Cheng W H, Hong C Y, et al. The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively[J]. Rice, 2018, 11(1): 50-67.
[53] Qiu J R, Huang Z, Xiang X Y, et al. MfbHLH38, a Myrothamnus flabellifolia bHLH transcription factor, confers tolerance to drought and salinity stresses in Arabidopsis[J]. BMC Plant Biology, 2020, 20(1): 542-556. doi: 10.1186/s12870-020-02732-6