[1] Reineke L H. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627-638.
[2] Nilson A. Modeling dependence between the number of trees and mean tree diameter of stand, stand density and stand sparsity[C]// Cieszewski C J, Strub M. Second International Conference on Forest Measurement and Quantitative Methods and Management & the 2004 Southern Mensurationists Meeting 15–18 June 2004 Hot Springs, Arkansas, USA. University of Georgia, Athens, USA, 74–94. 2006.
[3] 张连金, 惠刚盈, 孙长忠. 不同林分密度指标的比较研究[J]. 福建林学院学报, 2011, 31(3):257-261. doi: 10.3969/j.issn.1001-389X.2011.03.014
[4] Daniels R F, Burkhart H E. An integrated system of forest stand models[J]. Forest Ecology and Management, 1989, 23: 159-177.
[5] Mcdill M E, Amateis R L. Fitting discrete-time dynamic models having any time interval[J]. Forest Science, 1993, 39(3): 499-519.
[6] Cao Q V. Prediction of annual diameter growth and survival for individual trees from periodic measurements[J]. Forest Science, 2000, 46(1): 127-131.
[7] Cao Q V. Annual tree growth predictions based on periodic measurements[R]. IUFRO Symposium on Statistics and Information Technology in Forestry. Blacksburg, VA, 2002: 7-13.
[8] Cao Q V, Li S, Mcdill M E. Developing a system of annual tree growth equations for the loblolly pine-shortleaf pine type in Louisiana[J]. Canada Journal Forest Research, 2002, 32(11): 2051-2059. doi: 10.1139/x02-128
[9] 张雄清, 雷渊才. 可变生长率法和固定生长率法在单木年生长预测中的比较研究[J]. 林业科学研究, 2009, 22(6):824-828. doi: 10.3321/j.issn:1001-1498.2009.06.013
[10] Zhang X, Lei Y, Cao Q V. Compatibility of stand basal area predictions based on forecast combination[J]. Forest Science, 2010, 56(6): 552-557.
[11] 孟宪宇. 测树学(第二版)[M]. 北京: 中国林业出版社, 1996.
[12] Sun H, Zhang J, Duan A, et al. Estimation of the self-thinning boundary line within even-aged Chinese fir (Cunninghamia lanceolata ( Lamb. ) Hook. ) stands: Onset of self-thinning[J]. Forest Ecology and Management, 2011, 261(6): 1010-1015. doi: 10.1016/j.foreco.2010.12.019
[13] 冉啟香, 邓华锋, 吕常笑, 等. 油松林分断面积与蓄积量生长模型研究[J]. 西北林学院学报, 2016, 31(5):217-223. doi: 10.3969/j.issn.1001-7461.2016.05.36
[14] 张雄清, 张建国, 段爱国. 基于单木水平和林分水平杉木兼容性林分蓄积量模型的研究[J]. 林业科学, 2014, 50(1):82-87.
[15] 吴宏炜, 田 意, 黄光灿, 等. 基于非线性度量误差的湿地松生长模型[J]. 林业资源管理, 2019(6):71-76.
[16] Charr M I, Seynave F, Morneau M, et al. Significant differences and curvilinearity in the self-thinning relationships of 11 temperate tree species assessed from forest inventory data[J]. Annals of Forest Science, 2012, 69: 195-205. doi: 10.1007/s13595-011-0149-0
[17] Comeau P G, White M, Kerr G, et al. Maximum density–size relationships for Sitka spruce and coastal Douglas-fir in Britain and Canada[J]. Forestry, 2010, 83(5): 461-468. doi: 10.1093/forestry/cpq028
[18] Weiskittel A, Gould P, Temesgen H. Sources of variation in the self-thinning boundary line for three species with varying levels of shade tolerance[J]. Forest Science, 2009, 55(1): 84-93.
[19] Zhang X, Lu L, Cao Q V, et al. Climate sensitive self-thinning trajectories of Chinese fir plantations in south China[J]. Canadian Journal of Forest Research, 2018, 48: 1388-1397. doi: 10.1139/cjfr-2018-0168
[20] Pretzsch H, Biber P. A re-evaluation of Reineke’s rule and stand density index[J]. Forest Science, 2005, 51(4): 304-320.
[21] Zhang X, Cao Q V, Lu L, et al. Use of modified reineke's stand density index in predicting growth and survival of Chinese fir plantations[J]. Forest Science, 2019, 65(6): 776-783. doi: 10.1093/forsci/fxz033
[22] Ochi N, Cao Q V. A comparison of compatible and annual growth models[J]. Forest Science, 2003, 49(2): 285-290.
[23] 张雄清, 雷渊才. 基于定期调查数据的全林分年生长预测模型研究[J]. 中南林业科技大学学报, 2010, 30(40):69-74.