• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神农架地区生态环境遥感监测与恢复治理评价

戚 曌 于新文 谭炳香 邓广 于航 沈明潭

引用本文:
Citation:

神农架地区生态环境遥感监测与恢复治理评价

    通讯作者: 于新文, yuxinwen@ifrit.ac.cn
  • 中图分类号: S718.54

Remote Sensing Monitoring and Restoration Evaluation of Ecological Environment in Shennongjia Area

    Corresponding author: YU Xin-wen, yuxinwen@ifrit.ac.cn ;
  • CLC number: S718.54

  • 摘要: 目的 利用神农架林区、神农架自然保护区内和保护区外近20年的植被覆盖度变化信息,结合不同时期的森林经营活动和治理手段,进行生态环境变化监测与评价。 方法 以神农架林区、神农架自然保护区内和保护区外为研究区,应用1999年、2007年和2019年3期Landsat遥感影像,基于像元二分法模型估测研究区的植被覆盖度,采用差值分析的方法,分别估算各区域植被覆盖变化量,并结合不同时期的治理政策和经营活动进行评价分析。 结果 1999年到2019年,神农架林区总体植被覆盖度均值提高了8.25%,其中高植被覆盖度占97.50%;前期保护区内的植被覆盖度一直优于保护区外,到后期保护区内、外的植被覆盖度差异变小。 结论 近20年来,神农架林区的植被覆盖度总体处于增长的趋势,生态环境逐渐趋于平衡,说明自然保护区的建立、天然林保护工程和退耕还林工程等一系列政策的实施对区域生态环境的恢复是有效的。
  • 图 1  神农架林区位置示意图

    Figure 1.  Location diagram of Shennongjia Forest Region

    图 2  不同时期神农架林区影像(蓝色区域为保护区边界)

    Figure 2.  Mages of Shennongjia forest area in different periods (the blue area is the boundary of the reserve)

    图 3  各区域海拔等级分布

    Figure 3.  Elevation grade distribution map of each region

    图 4  技术路线

    Figure 4.  Technical roadmap

    图 5  1999—2019年不同区域植被覆盖度各等级面积动态变化

    Figure 5.  The dynamic changes of vegetation coverage in different regions from 1999 to 2019

    图 6  各个时期不同区域植被覆盖度变化等级分布

    Figure 6.  Each time the vegetation coverage change grade distribution in different areas

    表 1  覆盖神农架林区遥感数据详细信息

    Table 1.  Detailed information of remote sensing data covering Shennongjia Forest Region

    项目
    Items
    卫星
    Satellite
    传感器
    Sensor
    成像时间
    Imaging time
    波段
    Band
    空间分辨率
    Spatial resolution/m
    原数据
    Original date
    Landsat7 TM 1999−09−01 Band1,2,3,4,5,7 30
    Landsat5 ETM+ 2007−09−15 Band1,2,3,4,5,7 30
    Landsat8 OLI 2019−08−15 Band1,2,3,4,5,6,7 30
    去云数据
    Dates of eliminating cloud
    Landsat5 ETM+ 1999−08−8 Band1,2,3,4,5,7 30
    Landsat8 OLI 2019−07−18 Band1,2,3,4,5,6,7 30
    下载: 导出CSV

    表 2  海拔等级划分标准

    Table 2.  Standard for classification of elevation classes

    划分类别
    Classification
    低海拔区域
    Lower attitude area
    较低海拔区域
    Low attitude area
    中海拔区域
    Middle attitude area
    较高海拔区域
    High attitude area
    高海拔区域
    Higher attitude area
    取值范围 Ranges/m350~910910~1 4701 470~2 0302 030~2 5902 590~3 150
    下载: 导出CSV

    表 3  植被覆盖度等级划分标准

    Table 3.  Classification standard of vegetation coverage

    等级编号
    Grade number
    等级名称
    Grade name
    植被覆盖度取值范围
    Range of vegetation coverage
    类1低植被覆盖度
    Lower vegetation coverage
    0.00~0.20
    类2较低植被覆盖度
    Low vegetation coverage
    0.20~0.40
    类3中植被覆盖度
    Middle vegetation coverage
    0.40~0.60
    类4较高植被覆盖度
    High vegetation coverage
    0.60~0.80
    类5高植被覆盖度
    Higher vegetation coverage
    0.80~1.00
    下载: 导出CSV

    表 4  各个时期不同区域植被覆盖度均值

    Table 4.  Statistical table of mean vegetation coverage of different regions in different periods %

    年份
    Year
    保护区内
    Nature reserve
    保护区外
    Outside nature reserve
    整个林区
    Wholeforest
    1999 90.29 87.12 87.82
    2007 93.98 93.82 93.84
    2019 95.89 96.28 96.17
    下载: 导出CSV

    表 5  各个时期不同区域的植被覆盖度各等级面积占比

    Table 5.  Various periods of different regional vegetation coverage of each level area %

    等级
    Grade
    保护区内
    Nature reserve
    保护区外
    Outside nature reserve
    整个林区
    Wholeforest
    1999年2007年2019年1999年2007年2019年1999年2007年2019年
    低植被覆盖度 Lower vegetation coverage0.350.190.090.790.360.200.700.320.18
    较低植被覆盖度 Low vegetation coverage0.940.150.071.460.300.221.350.270.19
    中植被覆盖度 Middle vegetation coverage3.580.570.194.290.880.464.130.820.40
    较高植被覆盖度 High vegetation coverage9.845.531.9514.144.551.6613.174.781.73
    高植被覆盖度 Higher vegetation coverage85.2993.5697.7079.3293.9197.4680.6593.8197.50
    合计 Total100.00100.00100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表 6  各个时期每个区域的植被覆盖度变化等级面积占比

    Table 6.  Various periods each region level of vegetation coverage change in each area %

    等级
    Grade
    1999年至2007年
    From 1999 to 2007
    2007年至2019年
    From 2007 to 2019
    1999年至2019年
    From 1999 to 2019
    保护区内
    Nature reserve
    保护区外
    Outside nature reserve
    整个林区
    Whole forest
    保护区内
    Nature reserve
    保护区外
    Outside nature reserve
    整个林区
    Whole forest
    保护区内
    Nature reserve
    保护区外
    Outside nature reserve
    整个林区
    Whole forest
    明显增加
    Obviously increase
    6.6910.569.691.602.772.519.1714.3113.15
    轻微增加
    Slightly increase
    9.0015.7214.215.976.036.0110.1617.5915.92
    无变化
    No change
    81.6972.3574.4491.3789.4589.8880.1267.3370.21
    轻微减少
    Slightly reduced
    2.100.901.180.720.980.930.320.360.35
    明显减少
    Obviously decrease
    0.520.470.480.340.770.670.230.410.37
    合计
    Total
    100.00100.00100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表 7  每个区域各个时期的海拔等级植被覆盖度均值

    Table 7.  Mean FVC of each elevation level of each region in each period %

    等级
    Grade
    1999年
    1999 year
    2007年
    2007 year
    2019年
    2019 year
    保护区内
    Nature reserve
    保护区外
    Outside nature reserve
    整个林区
    Whole forest
    保护区内
    Nature reserve
    保护区外
    Outside nature reserve
    整个林区
    Whole forest
    保护区内
    Nature reserve
    保护区外
    Outside nature reserve
    整个林区
    Whole forest
    低海拔区域
    Lower altitude
    71.14 70.24 70.39 86.36 84.27 84.44 90.61 88.87 89.01
    较低海拔区域
    Low altitude
    85.10 81.98 82.42 94.59 93.05 93.27 96.34 95.81 95.88
    中海拔区域
    Middle altitude
    95.88 93.22 93.72 97.78 96.93 97.09 98.20 98.41 98.37
    较高海拔区域
    Hight altitude
    92.83 91.46 91.98 92.97 92.33 92.57 95.03 95.13 95.09
    高海拔区域
    Highter altitude
    74.67 71.67 74.39 84.46 82.97 83.07 90.54 88.64 89.92
    下载: 导出CSV
  • [1] 赵 娜. 神农架: 从木头经济到生态旅游[J]. 绿色中国, 2014(22):49-51.

    [2] 邓舒雨, 董向忠, 马明哲, 等. 基于森林碳库动态评估神农架国家级自然保护区的保护成效[J]. 生物多样性, 2018, 26(1):27-35. doi: 10.17520/biods.2017240

    [3]

    Karia J P, Porwal M C, Roy P S, et al. Forest change detection in Kalarani round, Vadodara, Gujarat— a Remote Sensing and GIS approach[J]. J Indian Soc Remote Sensing, 2001, 29: 129-138. doi: 10.1007/BF02989924
    [4] 邓龙强, 廖明尧, 李丽娟, 等. 神农架自然保护区森林旅游发展与对策探讨[J]. 湖北林业科技, 2012(5):74-76+84. doi: 10.3969/j.issn.1004-3020.2012.05.023

    [5]

    Wang S, Zhang B, Xie G D, et al. Vegetation cover changes and sand-fixing service responses in the Beijing–Tianjin sandstorm source control project area[J]. Environmental Development, 2019, 34: 144-155.
    [6] 张兴航, 张百平, 王 晶, 等. 神农架林区植被分布与地形的关系研究[J]. 地球信息科学学报, 2020, 22(3):482-493. doi: 10.12082/dqxxkx.2020.190553

    [7] 刘志文. 长江上游地区天然林保护的政策研究[D]. 重庆: 西南农业大学, 2001.

    [8] 王翠玲, 臧振华, 邱 月, 等. 湖北神农架国家级自然保护区森林和川金丝猴栖息地的保护成效[J]. 生物多样性, 2017, 25(5):504-512. doi: 10.17520/biods.2016349

    [9] 李林立, 况明生, 蒋勇军, 等. 生态补偿在实现森林地区经济可持续发展中的效应研究——以湖北神农架为例[J]. 中国生态农业学报, 2007(1):162-165.

    [10] 唐 诚. 神农架自然保护区川金丝猴生境选择与适宜性评价[D]. 武汉: 华中农业大学, 2014.

    [11] 杨福生, 刘胜祥. 神农架国家级自然保护区珍稀濒危植物现状及评价方法的研究[C]. 中国植物学会, 第六届全国系统与进化植物学青年学术研讨会论文摘要集, 2000: 5.

    [12] 袁 琴. 神农架林区开发史研究[D]. 西安: 西北农林科技大学, 2015.

    [13] 陈 男. 神农架林区森林旅游市场开发研究[D]. 长沙: 中南林业科技大学, 2006.

    [14] 祝 聪, 彭文甫, 张丽芳, 等. 2006—2016年岷江上游植被覆盖度时空变化及驱动力[J]. 生态学报, 2019, 39(5):1583-1594.

    [15]

    Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3): 241-252. doi: 10.1016/S0034-4257(97)00104-1
    [16] 方杰诗, 周晓霖. 基于遥感影像和NDVI阈值法的银川市植被覆盖度反演与监测[J]. 节水灌溉, 2014(11):68-72+76. doi: 10.3969/j.issn.1007-4929.2014.11.019

    [17] 刘家琰, 谢宗强, 申国珍, 等. 基于SPOT-VEGETATION数据的神农架林区1998—2013年植被覆盖度格局变化[J]. 生态学报, 2018, 38(11):3961-3969.

    [18]

    Rahman M M. Temporal change detection of vegetation coverage in Patuakhali Coastal Area of Bangladesh using GIS & Remotely Sensed Data[J]. International Journal of Geomatics and Geosciences, 2013, 4(1): 36-46. doi: 10.4236/ijg.2013.41004
    [19] 何慧娟, 卓 静, 王 娟, 等. 陕西省退耕还林植被覆盖度与湿润指数的变化关系[J]. 生态学报, 2016, 36(2):439-447.

    [20] 赵 阳, 邓志毅. 自然保护区农村与农业发展对策研究——以湖北省神农架林区为例[J]. 三峡论坛(三峡文学. 理论版), 2013(2):70-73.

    [21] 王晓东, 段仲远, 贺德璜. 建立神农架自然保护区开展科学研究[J]. 湖北环境保护, 1980(3):15-24.

    [22] 赵海迪, 刘世梁, 董世魁, 等. 基于植被覆盖度的藏羚羊栖息地时空变化研究[J]. 生态学报, 2014, 34(12):3285-3292.

  • [1] 李毅杨仁斌伍格致毕军平易敏胡文敏 . 长株潭核心区植被覆盖度动态监测与分析. 林业科学研究, 2015, 28(2): 265-270.
    [2] 陈巧陈永富鞠洪波 . 基于3S技术的天保区植被变化监测方法研究. 林业科学研究, 2013, 26(6): 736-743.
    [3] 陆元昌张守攻 . 中国天然林保护工程区目前急需解决的技术问题和对策. 林业科学研究, 2003, 16(6): 731-738.
    [4] 胡鸿鞠洪波田昕杨雪清孙志超 . 基于GF-1和TM数据的金河林业局天然林保护成效评估研究. 林业科学研究, 2019, 32(1): 141-146. doi: 10.13275/j.cnki.lykxyj.2019.01.019
    [5] 陈奶寿张秋芳陈坦杨玉盛谢锦升 . 退化红壤恢复过程中芒萁的N、P化学计量特征. 林业科学研究, 2016, 29(5): 735-742.
    [6] 周彬王戈唐源盛张炜银臧润国 . 中国西南山区天然林退化分区. 林业科学研究, 2010, 23(4): 612-616.
    [7] 陈巧陈永富 . QuickBird遥感数据监测植被覆盖度的研究. 林业科学研究, 2005, 18(4): 375-380.
    [8] . 古田山国家自然保护区马尾松林主要种群生态位研究. 林业科学研究, 2009, 22(3): -.
    [9] 杨海龙李迪强朵海瑞马 剑 . 梵净山国家级自然保护区植被分布与黔金丝猴生境选择. 林业科学研究, 2010, 23(3): 393-398.
    [10] 朱学灵崔向慧刘晓静 . 宝天曼自然保护区林火干扰下不同恢复阶段栎林群落幼苗库动态特征. 林业科学研究, 2011, 24(5): 572-578.
    [11] 胡琛贺云龙黄金莲雷静品崔鸿侠唐万鹏马国飞 . 神农架4种典型针叶人工林土壤酶活性及其生态化学计量特征. 林业科学研究, 2020, 33(4): 143-150. doi: 10.13275/j.cnki.lykxyj.2020.04.018
    [12] . 江西官山自然保护区昆虫区系分析. 林业科学研究, 2009, 22(3): -.
    [13] 彭佳龙史小华张汝忠 . 浙江括苍山自然保护区种子植物区系分析. 林业科学研究, 2008, 21(5): 713-718.
    [14] . 山西太宽河自然保护区植物区系研究. 林业科学研究, 2009, 22(3): -.
    [15] 宋扬徐正会李春良张宁张力蒋华莫福燕 . 云南南滚河自然保护区蚁科昆虫区系分析. 林业科学研究, 2013, 26(6): 773-780.
    [16] 吴兴亮李泰辉章卫民钟琼芯宋斌郭建荣 . 海南岛坝王岭自然保护区的多孔菌研究. 林业科学研究, 1998, 11(2): 163-168.
    [17] 石金莲李俊清李绍泉王碧春 . 辽宁老秃顶子国家级自然保护区评价. 林业科学研究, 2003, 16(6): 720-725.
    [18] 徐正会蒋兴成陈志强吴定敏 . 高黎贡山自然保护区东坡垂直带蚂蚁群落研究. 林业科学研究, 2001, 14(2): 115-124.
    [19] 徐正会吴定敏陈志强蒋兴成 . 高黎贡山自然保护区东坡水平带蚂蚁群落研究. 林业科学研究, 2001, 14(6): 603-609.
    [20] 李文英贺运春王建明张作刚宋东辉 . 庞泉沟自然保护区虫生真菌资源调查. 林业科学研究, 2003, 16(3): 339-342.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  810
  • HTML全文浏览量:  500
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 录用日期:  2021-03-20
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-12-20

神农架地区生态环境遥感监测与恢复治理评价

    通讯作者: 于新文, yuxinwen@ifrit.ac.cn
  • 中国林业科学研究院资源信息研究所,北京 100091

摘要:  目的 利用神农架林区、神农架自然保护区内和保护区外近20年的植被覆盖度变化信息,结合不同时期的森林经营活动和治理手段,进行生态环境变化监测与评价。 方法 以神农架林区、神农架自然保护区内和保护区外为研究区,应用1999年、2007年和2019年3期Landsat遥感影像,基于像元二分法模型估测研究区的植被覆盖度,采用差值分析的方法,分别估算各区域植被覆盖变化量,并结合不同时期的治理政策和经营活动进行评价分析。 结果 1999年到2019年,神农架林区总体植被覆盖度均值提高了8.25%,其中高植被覆盖度占97.50%;前期保护区内的植被覆盖度一直优于保护区外,到后期保护区内、外的植被覆盖度差异变小。 结论 近20年来,神农架林区的植被覆盖度总体处于增长的趋势,生态环境逐渐趋于平衡,说明自然保护区的建立、天然林保护工程和退耕还林工程等一系列政策的实施对区域生态环境的恢复是有效的。

English Abstract

  • 植被在维持生态系统稳定方面发挥着主导作用[1],但因早期社会经济发展的需要以及对森林重要性缺乏认识,经营方式并不科学,并造成森林资源不同程度的破坏,神农架就是一个很具有代表性的例子[2]。为促进生态环境的恢复,不同地区实施了一系列环境优化治理政策[3],如天然林保护工程,退耕还林工程等[4]。了解植被的恢复状况以及经营方式的适宜性对地区可持续发展有着重要意义[5]

    神农架林区从采伐到保护经历了不同的发展阶段,对研究生态环境变化,人为协助森林经营活动,促进生态环境恢复的成效等有着重要的研究价值,本研究通过分析其植被覆盖度变化趋势,结合不同时期的政策和人类活动,研究神农架近20年的植被覆盖度变化。在空间维度上,因1999年神农架林区内设立了自然保护区,为更好地突出该措施的保护效用,本研究将神农架划分为3个研究区域——神农架林区、神农架自然保护区内和神农架自然保护区外,分别进行植被覆盖度变化的统计分析;在时间纬度上,从1999年、2007年、2019年3个时间点进行植被覆盖度的变化研究,为以后的森林经营活动改善提供更加科学的依据。

    • 神农架林区位于湖北省的西北方向,地理坐标在109°56′~110°58′ E,31°15′~31°75′ N之间[6],是长江流域生态系统的重要保护对象之一,具有极大的经济价值、生态价值和科研价值[7]。1982年成立神农架自然保护区,位于神农架林区的西南方向,地理坐标为110°03′05″~110°33′50″ E,31°21′20″~31°36′20″ N[8]图1)。神农架山脉属秦岭山系,位于大巴山脉的东段,地势总体西高东低,84%的地区都在海拔1 200 m以上[9];气候属于北亚热带季风气候,夏季湿润多雨,冬季温和少雨,年平均降水量在800~2 500 mm之间,年平均温度在11.0 ℃~12.2 ℃之间[10]。神农架林区以常绿落叶阔叶混交林为地带性植被,拥有植物3 700多种,动物有近1 000多种[11],其中不乏金丝猴、珙桐、连香树等重点保护对象,在1986年被批准为国家级森林和野生动物类型自然保护区[12],是我国动植物资源最为丰富的地区之一,是一个巨大的生物基因库,其绿色旅游产业为当地主要的经济支柱[13]

      图  1  神农架林区位置示意图

      Figure 1.  Location diagram of Shennongjia Forest Region

    • 以1999年、2007年和2019年3个时期的Landsat系列遥感影像为数据源,时相比较接近,均已进行正射校正,仅做大气校正,然后用神农架林区、神农架自然保护区内、神农架自然保护区外3个矢量边界图分别裁剪每个时期的遥感影像;其中1999年和2019年的图像中部分区域被云以及云的阴影所覆盖,很大程度地降低了数据的准确性,需要做去云处理,采用的方法是选取同年其它时间无云的遥感影像替换有云区域,使用数据的具体信息见表1。因不同时期遥感影像存在轨道偏移现象,且不能完全覆盖研究区,所以以覆盖面最小的2019年Landsat8影像为基准,获取3个时期相同覆盖面积的研究区影像。图2为神农架自然保护区内、保护区外和神农架林区各个时期的标准假彩色影像。

      表 1  覆盖神农架林区遥感数据详细信息

      Table 1.  Detailed information of remote sensing data covering Shennongjia Forest Region

      项目
      Items
      卫星
      Satellite
      传感器
      Sensor
      成像时间
      Imaging time
      波段
      Band
      空间分辨率
      Spatial resolution/m
      原数据
      Original date
      Landsat7 TM 1999−09−01 Band1,2,3,4,5,7 30
      Landsat5 ETM+ 2007−09−15 Band1,2,3,4,5,7 30
      Landsat8 OLI 2019−08−15 Band1,2,3,4,5,6,7 30
      去云数据
      Dates of eliminating cloud
      Landsat5 ETM+ 1999−08−8 Band1,2,3,4,5,7 30
      Landsat8 OLI 2019−07−18 Band1,2,3,4,5,6,7 30

      图  2  不同时期神农架林区影像(蓝色区域为保护区边界)

      Figure 2.  Mages of Shennongjia forest area in different periods (the blue area is the boundary of the reserve)

    • 在分析不同时期的植被覆盖度变化时,为了突出生态环境恢复治理的成效,减少客观因素的影响,将考虑海拔分布差异性对植被的影响,从“地理空间数据云”网站下载了30 m分辨率的DEM数据,因不同植被覆盖度等级的面积差异过大,所以根据海拔范围的极大值和极小值,将其划分为均等的5个等级,划分标准见表2,然后生成保护区内、保护区外和整个林区的海拔等级分布图,具体结果见图3

      表 2  海拔等级划分标准

      Table 2.  Standard for classification of elevation classes

      划分类别
      Classification
      低海拔区域
      Lower attitude area
      较低海拔区域
      Low attitude area
      中海拔区域
      Middle attitude area
      较高海拔区域
      High attitude area
      高海拔区域
      Higher attitude area
      取值范围 Ranges/m350~910910~1 4701 470~2 0302 030~2 5902 590~3 150

      图  3  各区域海拔等级分布

      Figure 3.  Elevation grade distribution map of each region

    • 采用归一化植被指数(NDVI)和像元二分法模型(VFC)提取神农架林区的植被覆盖度。NDVI的计算原理是采用线性拉伸的方法增加近红外和红外的对比度,利用近红外波段强反射和红光波段强吸收的特点,获取两个波段反射值之差与两个波段反射值之和的比值,具体计算方法见公式(1)[14]

      $ NDVI=\frac{{\rho }_{\mathrm{N}\mathrm{I}\mathrm{R}}-{\rho }_{\mathrm{R}}}{{\rho }_{\mathrm{N}\mathrm{I}\mathrm{R}}+{\rho }_{\mathrm{R}}} $

      (1)

      式中:NDVI表示归一化植被指数;ρNIR表示近红外波段的地表反射率;ρR表示红外波段的地表反射率。取值范围在[−1,1]之间,当NDVI为负值时,表示该区域有水、雪或云雾等,红光波段的反射率比近红外的高;当NDVI接近于0时,表示该区域为岩石或裸露的土壤,近红外和红光波段的反射率较为接近;当NDVI大于0时,表示该区域有植被覆盖,且随着NDVI值的增加,植被覆盖程度越高。

      像元二分法模型(VFC)的计算原理是以像元为单位,将其看成由植被和土壤两部分组成,然后对遥感信息进行分解,建立像元二分法模型,进而得到植被覆盖度[15],取值范围为[0,1],具体计算方法见公式(2)[16]

      $ VFC=\frac{NDVI-{NDVI}_{\mathrm{s}\mathrm{o}\mathrm{i}\mathrm{l}}}{{NDVI}_{\mathrm{v}\mathrm{e}\mathrm{g}}-{NDVI}_{\mathrm{s}\mathrm{o}\mathrm{i}\mathrm{l}}} $

      (2)

      式中:VFC表示植被覆盖度;NDVIsoil表示纯裸地覆盖像元的NDVI值;NDVIveg表示纯植被覆盖像元的NDVI值;由公式(2)可以看出,该方法的关键因素是NDVIsoilNDVIveg值的选取,一种方法是在确定为裸地和密集植被的区域内取几个像元值的均值作为NDVIsoilNDVIveg的值,另一种方法是为减少噪声的影响,统计区域NDVI值的累计百分比,通过选取置信区间的方式来确定,区间最大值为NDVIveg值,最小值为NDVIsoil[17]。本研究采用第二种方法,置信区间为(5%~95%)。理论上植被覆盖度应该大于等于0,但有时会出现小于0或大于1的异常值,针对这种情况,通常人为地将小于0的值赋值为0,大于1的值赋值为1。为了更加直观地表示出植被覆盖度的变化情况,将各个时期的区域植被覆盖度计算结果按照表3的标准进行等级划分。

    • 遥感监测变化的基本原理是区域光谱信息变化与土地覆盖变化相结合[18],通过对不同治理背景下的植被覆盖度变化分析,反映了政策实施的适宜性,具体技术流程见图4

      表 3  植被覆盖度等级划分标准

      Table 3.  Classification standard of vegetation coverage

      等级编号
      Grade number
      等级名称
      Grade name
      植被覆盖度取值范围
      Range of vegetation coverage
      类1低植被覆盖度
      Lower vegetation coverage
      0.00~0.20
      类2较低植被覆盖度
      Low vegetation coverage
      0.20~0.40
      类3中植被覆盖度
      Middle vegetation coverage
      0.40~0.60
      类4较高植被覆盖度
      High vegetation coverage
      0.60~0.80
      类5高植被覆盖度
      Higher vegetation coverage
      0.80~1.00

      图  4  技术路线

      Figure 4.  Technical roadmap

    • 通过统计计算得到各个时期不同区域的植被覆盖度均值[19],结果见表4;根据表3的标准对各个区域的植被覆盖度分别进行了等级划分,各等级植被覆盖度面积统计结果见表5

      表 4  各个时期不同区域植被覆盖度均值

      Table 4.  Statistical table of mean vegetation coverage of different regions in different periods %

      年份
      Year
      保护区内
      Nature reserve
      保护区外
      Outside nature reserve
      整个林区
      Wholeforest
      1999 90.29 87.12 87.82
      2007 93.98 93.82 93.84
      2019 95.89 96.28 96.17

      表 5  各个时期不同区域的植被覆盖度各等级面积占比

      Table 5.  Various periods of different regional vegetation coverage of each level area %

      等级
      Grade
      保护区内
      Nature reserve
      保护区外
      Outside nature reserve
      整个林区
      Wholeforest
      1999年2007年2019年1999年2007年2019年1999年2007年2019年
      低植被覆盖度 Lower vegetation coverage0.350.190.090.790.360.200.700.320.18
      较低植被覆盖度 Low vegetation coverage0.940.150.071.460.300.221.350.270.19
      中植被覆盖度 Middle vegetation coverage3.580.570.194.290.880.464.130.820.40
      较高植被覆盖度 High vegetation coverage9.845.531.9514.144.551.6613.174.781.73
      高植被覆盖度 Higher vegetation coverage85.2993.5697.7079.3293.9197.4680.6593.8197.50
      合计 Total100.00100.00100.00100.00100.00100.00100.00100.00100.00

      表4表5可以看出,3个区域的植被覆盖度都呈增加趋势,1999年到2007年植被覆盖度增加速率更大,其中1999年保护区内的平均植被覆盖度最大,为90.29%,整个林区的植被覆盖度接近于保护区外的植被覆盖度;到了2007年,保护区内、外的植被覆盖度均有明显的增加且非常接近,在94.00%左右,而2007年到2019年,各个区域的植被覆盖度增加速率减缓,相对而言,保护区外增加的趋势更大,且接近于整个林区的植被覆盖度,整个林区的高植被覆盖度的面积达到97.5%,生态环境十分良好。

      1999年保护区已经建立了17年,保护区内的生长环境很大程度地避免了人为方面的干扰,促使保护区内生态环境的恢复,因此植被覆盖度相比于保护区外的高;2000年神农架林区全面停止林木采伐,开始实施天然林保护工程和退耕还林工程,并开展补植、抚育活动,建设科学的数字化林业系统,促使森林优良化经营[20],使得2007年植被覆盖度急剧增长;2008年年初的雨雪冰冻灾害,7、8月份的山洪灾害以及10、11月份长江沿岸区域的强降水等一系列自然灾害的影响使得2007年至2019年植被增长缓慢,但在此期间实施的天然林保护工程二期延续了一期的政策,巩固了一期的成果,再加上退耕还林工程的持续实施,对植被自然灾害后的恢复提供了很大的帮助。

      由各等级植被覆盖度分布结果(图5)可以看出,区域1999年的植被覆盖度都明显低于2007年和2019年的植被覆盖度,结合表4中的数据发现,不同时期各个区域的植被覆盖度等级分布中,高植被覆盖度和较高植被覆盖度均占研究区面积的90%以上,2007年和2019年甚至超过了98%,而且高植被覆盖度的面积是逐渐增加的,其余植被覆盖度等级的面积都是逐渐减少的,2019年低植被覆盖度、较低植被覆盖度和中植被覆盖度面积占比都不到1%,由此可以看出植被生长环境是趋于稳定的,生态系统恢复良好。

      图  5  1999—2019年不同区域植被覆盖度各等级面积动态变化

      Figure 5.  The dynamic changes of vegetation coverage in different regions from 1999 to 2019

    • 为了表示出各个区域植被覆盖度在每个时期增加和减少的程度,分别用2007年的植被覆盖度值减去1999年的植被覆盖度值、2019年的植被覆盖度值减去2007年的植被覆盖度值和2019年的植被覆盖度值减去1999年的植被覆盖度值,从而获得各个时间段的植被覆盖度变化值,为了突出变化程度,把变化值进行等级划分,划分结果和取值范围分别为:明显增加(+0.20, +1.00],轻微增加(+0.10, +0.20],无变化[−0.10, +0.10],轻微减少[−0.20, −0.10),明显减少[−1.00, −0.20),差值分析后对每个结果进行统计(见表6),并生成植被覆盖度变化等级分布图(图6)。

      表 6  各个时期每个区域的植被覆盖度变化等级面积占比

      Table 6.  Various periods each region level of vegetation coverage change in each area %

      等级
      Grade
      1999年至2007年
      From 1999 to 2007
      2007年至2019年
      From 2007 to 2019
      1999年至2019年
      From 1999 to 2019
      保护区内
      Nature reserve
      保护区外
      Outside nature reserve
      整个林区
      Whole forest
      保护区内
      Nature reserve
      保护区外
      Outside nature reserve
      整个林区
      Whole forest
      保护区内
      Nature reserve
      保护区外
      Outside nature reserve
      整个林区
      Whole forest
      明显增加
      Obviously increase
      6.6910.569.691.602.772.519.1714.3113.15
      轻微增加
      Slightly increase
      9.0015.7214.215.976.036.0110.1617.5915.92
      无变化
      No change
      81.6972.3574.4491.3789.4589.8880.1267.3370.21
      轻微减少
      Slightly reduced
      2.100.901.180.720.980.930.320.360.35
      明显减少
      Obviously decrease
      0.520.470.480.340.770.670.230.410.37
      合计
      Total
      100.00100.00100.00100.00100.00100.00100.00100.00100.00

      图  6  各个时期不同区域植被覆盖度变化等级分布

      Figure 6.  Each time the vegetation coverage change grade distribution in different areas

      图6可以看出:1999—2019年各个区域的植被覆盖度均呈现大规模的增加,1999—2007年增加的更为明显。结合表5来看,1999—2007年相比于保护区内,保护区外有近25%的面积增加,轻微增加居多,而减少的面积不到3.00%,那是因为保护区自1982年设立以来,严格保护区域生态体系,减少人为干扰[21],而保护区外在2000年才停止全面采伐,所以1999年相比于保护区内,保护区外的植被覆盖度增长空间更大。2007—2019年各个区域植被覆盖增加的面积均不足10%,减少的面积也不超过2.00%,主要受自然灾害的影响。

      1999—2019年近20年来,林区植被覆盖度是增加的,尤其是保护区外,其中增加的面积在30.00%以上,轻微增加的面积略高,减少的面积不足1.00%,而保护区97.00%以上面积的植被属于高植被覆盖度,因此可以看出自然保护区的设立、天保工程与退耕还林工程的实施等一系列人为协助森林经营活动的实施,对当地植被面积的增长和生态环境的维护有很大成效。

    • 对比植被覆盖度变化等级分布图可以看出,植被增加的区域大部分都分布在低海拔区域,且不同植被覆盖度等级之间的面积相差极大,为了进一步分析植被覆盖度与海拔之间的关系,本研究将海拔范围进行均等划分,对每个时期不同区域各海拔等级的植被覆盖度进行均值计算,以此作为分析依据[22],具体结果见表7

      表 7  每个区域各个时期的海拔等级植被覆盖度均值

      Table 7.  Mean FVC of each elevation level of each region in each period %

      等级
      Grade
      1999年
      1999 year
      2007年
      2007 year
      2019年
      2019 year
      保护区内
      Nature reserve
      保护区外
      Outside nature reserve
      整个林区
      Whole forest
      保护区内
      Nature reserve
      保护区外
      Outside nature reserve
      整个林区
      Whole forest
      保护区内
      Nature reserve
      保护区外
      Outside nature reserve
      整个林区
      Whole forest
      低海拔区域
      Lower altitude
      71.14 70.24 70.39 86.36 84.27 84.44 90.61 88.87 89.01
      较低海拔区域
      Low altitude
      85.10 81.98 82.42 94.59 93.05 93.27 96.34 95.81 95.88
      中海拔区域
      Middle altitude
      95.88 93.22 93.72 97.78 96.93 97.09 98.20 98.41 98.37
      较高海拔区域
      Hight altitude
      92.83 91.46 91.98 92.97 92.33 92.57 95.03 95.13 95.09
      高海拔区域
      Highter altitude
      74.67 71.67 74.39 84.46 82.97 83.07 90.54 88.64 89.92

      表7可以看出:1999年各个区域在较低海拔区域、中海拔区域和较高海拔区域的植被覆盖度较高,极差值在25.00%左右。之后林区开始全面停止采伐,减少了人为方面的干扰,也给植被自然生长提供了一个良好的环境,在2007年和2019年两个时期,各海拔等级之间的植被覆盖度均值差异减小,2007年各海拔等级的极差值在15%以内,2019年各海拔等级的极差值在10%以内,由此可以看出,随着生态环境逐渐趋于稳定,不同海拔等级间的植被覆盖度差异逐渐减少,植被覆盖度与海拔之间的相关性并不显著。

    • 从植被覆盖度分布的动态变化分析结果可以得出以下几点结论:

      (1)近20年来,神农架林区的植被覆盖度呈增长趋势,前期增长速率较大,后期基本维持在一个较高的植被覆盖度水平,到2019年神农架林区的低植被覆盖度和较低植被覆盖度的面积总体减少至5%以下,总的生态环境恢复良好。与此同时,通过植被覆盖度与海拔之间的分析看出,随着森林生态环境逐渐平稳,海拔与植被覆盖度的相关性并不显著,可以忽略海拔对植被覆盖分布的影响。

      (2)从初期保护区内、外植被覆盖度的统计结果可以看出,自然保护区的设立对区域生态环境的恢复是有一定成效的,而从后期保护区外的植被变化趋势可以看出,天然林保护工程和退耕还林工程等政策的实施成效明显,应继续维护和促进自然保护区的发展,坚持天然林保护工程、退耕还林工程政策的实施与优化。

      (3)2007—2019年,因植被受各种自然灾害的影响,增长速率缓慢,应该加强建设地区自然灾害监测体系,对可能发生的极端气候灾害提前防范,更大程度上减少自然灾害引起的植被破坏,极大发挥人为方面的促进作用。

      自然保护区与天保工程等治理政策的实施成效显著,本研究从植被覆盖度的动态变化趋势来评价生态环境恢复状况,仅从海拔的角度来分析对植被生长环境的影响,缺少气候因子和多种地形因子相互结合,具有一定的局限性,在以后的研究中,可以从多方面因素来综合分析。

参考文献 (22)

目录

    /

    返回文章
    返回