• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青冈栎次生林土壤活性有机碳对间伐强度的响应

齐梦娟 石朔蓉 姜春前 王书韧 王辉 王景弟

引用本文:
Citation:

青冈栎次生林土壤活性有机碳对间伐强度的响应

    作者简介: 齐梦娟,硕士,主要研究方向:森林培育。E-mail:17863806075@163.com.
    通讯作者: 姜春前, jiangchq@caf.ac.cn
  • 中图分类号: S753.7

Response of Soil Labile Organic Carbon to Thinning Intensity in Secondary Forest of Cyclobalanopsis glauca

    Corresponding author: JIANG Chun-qian, jiangchq@caf.ac.cn ;
  • CLC number: S753.7

  • 摘要: 目的 探索不同间伐强度对青冈栎次生林土壤活性有机碳的响应。 方法 以湖南省天心阁林场青冈栎次生林为研究对象,于2018年设置4种间伐强度(对照:0%;弱度间伐:15%;中度间伐:30%;强度间伐:50%),探讨不同间伐强度下4种土壤活性有机碳(土壤微生物量碳、可溶性有机碳、颗粒有机碳和易氧化有机碳)含量变化及其在总有机碳中的分配比例。 结果 (1)与对照样地相比,中度间伐和强度间伐显著提高了土壤总有机碳含量,弱度间伐降低了土壤总有机碳含量;(2)间伐提高了土壤微生物量碳的含量,降低了可溶性有机碳的含量,土壤颗粒有机碳和易氧化有机碳含量在不同间伐处理下的变化趋势与总有机碳一致;(3)不同间伐强度下土壤微生物量碳、可溶性有机碳、颗粒有机碳和易氧化有机碳的分配比例分别为:0.23%~0.54%、0.40%~0.78%、16.54%~47.30%和6.46%~14.29%,强度间伐显著提高了微生物量碳、颗粒有机碳和易氧化有机碳分配比例,降低了可溶性有机碳的分配比例,表明间伐提高了不稳定碳的比例,且颗粒有机碳对间伐处理更敏感;(4)相关性分析表明,土壤总有机碳与各活性有机碳组分间呈极显著正相关,且活性有机碳与土壤含水量和总氮含量呈正相关;土壤活性组分碳间转化依赖于总有机碳量的变化,且在一定的水分和氮素条件下易发生分解转变。 结论 不同间伐处理对土壤有机碳及其活性组分的含量有显著影响,强度间伐显著提高土壤有机碳及其活性组分的含量,加快土壤中的碳素循环。
  • 图 1  不同间伐处理下土壤活性有机碳组分含量变化

    Figure 1.  Changes of soil labile organic carbon content under different thinning treatments

    表 1  样地基本概况

    Table 1.  Basic overview of sample plots

    处理
    Treatment
    坡向
    Aspect
    坡度
    Slope/(°)
    平均海拔
    Average
    altitude/m
    林分密度
    Density/
    (株·hm−2)
    平均胸径
    Average DBH/
    cm
    平均树高
    Average
    height/m
    郁闭度
    Canopy
    density
    灌木层盖度
    Coverage
    degree/%
    草本层盖度
    Coverage
    degree/%
    CK东偏北28°251771 37110.9311.750.9530.1313.33
    LIT东偏北30°231731 26412.5510.140.8530.0736.87
    MIT东偏北29°241891 10912.0711.560.7552.1034.90
    HIT东偏北26°251691 05513.1612.070.6057.1351.57
    下载: 导出CSV

    表 2  土壤总有机碳及碳氮比(均值 ± 标准误,下同)

    Table 2.  Soil total organic carbon and carbon to nitrogen ratio(Mean ± SE. The same below.)

    处理
    Treatment
    土层
    Soil layer/cm
    总有机碳
    TOC/(g∙kg−1)
    碳/氮
    C/N
    CK0~1033.78 ± 1.00 Abc12.98 ± 1.00 Abc
    10~2016.65 ± 3.11 Ba11.40 ± 0.65 Ba
    20~3016.43 ± 1.24 Ba11.48 ± 0.44 Ba
    LIT0~1028.83 ± 0.89 Ac10.66 ± 1.43 Ac
    10~2019.65 ± 5.85 Ba13.27 ± 4.82 Aa
    20~3014.37 ± 2.62 Bab10.70 ± 2.45 Aa
    MIT0~1036.26 ± 5.05 Aab16.61 ± 0.87 Aa
    10~2016.89 ± 0.44 Ba10.59 ± 1.86 Ba
    20~3014.20 ± 2.62 Bab11.21 ± 2.65 Ba
    HIT0~1039.96 ± 1.20 Aa14.07 ± 0.89 Aab
    10~2019.14 ± 5.32 Ba11.24 ± 1.09 Ba
    20~3011.41 ± 2.49 Cb9.64 ± 0.87 Ba
      注:不同大写字母表示同一间伐强度不同土层间差异显著(P < 0.05);不同小写字母表示同一土层不同间伐强度间差异显著(P < 0.05)。下同。
      Notes:The difference of cutting strength between different soil layers was significant (P < 0.05), and different lowercase letters showed significant difference between different cutting strength of the same soil layer (P < 0.05).The same below.
    下载: 导出CSV

    表 3  不同间伐强度下土壤活性有机碳占总有机碳比例

    Table 3.  The ratio of soil labile organic carbon to total organic carbon under different thinning intensity

    处理
    Treatment
    土层深度
    Soil layer/cm
    土壤活性有机碳占总有机碳的比例
    The ratio of soil active organic carbon to total organic carbon/%
    颗粒有机碳
    POC
    易氧化有机碳
    ROC
    微生物量碳
    MBC
    可溶性有机碳
    DOC
    CK0~1029.83 ± 0.042 Aab6.46 ± 0.01 Ab0.23 ± 0.38 Bb0.71 ± 0.19 Aa
    10~2024.95 ± 0.084 ABb9.95 ± 0.03 Aa0.32 ± 0.28 Aa0.76 ± 1.51 Aa
    20~3016.54 ± 0.060 Bb8.07 ± 0.03 Aa0.32 ± 0.42 Ab0.59 ± 1.27 Aa
    LIT0~1022.89 ± 0.054 Ab7.67 ± 0.01 Aab0.29 ± 0.47 Aab0.48 ± 0.88 Ab
    10~2020.40 ± 0.050 Ab7.73 ± 0.02 Aa0.27 ± 0.87 Aa0.52 ± 0.64 Aa
    20~3018.08 ± 0.061 Ab10.47 ± 0.03 Aa0.40 ± 0.69 Aab0.65 ± 1.53 Aa
    MIT0~1035.94 ± 0.061 Aa14.29 ± 0.07 Aa0.34 ± 0.87 Aa0.45 ± 1.34 Ab
    10~2037.20 ± 0.153 Aab9.37 ± 0.05 Aa0.33 ± 0.77 Aa0.59 ± 1.36 Aa
    20~3026.62 ± 0.118 Aab8.54 ± 0.05 Aa0.34 ± 0.27 Aab0.56 ± 1.35 Aa
    HIT0~1040.68 ± 0.068 Aa12.85 ± 0.04 Aab0.32 ± 0.27 Aab0.40 ± 0.46 Bb
    10~2047.30 ± 0.050 Aa8.22 ± 0.02 Aa0.40 ± 1.22 Aa0.60 ± 1.12 ABa
    20~3042.04 ± 0.089 Aa12.72 ± 0.01 Aa0.54 ± 1.96 Aa0.78 ± 2.20 Aa
    下载: 导出CSV

    表 4  土壤有机碳及活性组分与理化因子相关性分析

    Table 4.  Correlation analysis of soil organic carbon and labile components and soil physicochemical factors

    pH含水量TNC/NTOCROCPOCMBC
    TOC−0.3950.592*0.926**0.804**
    ROC−0.0950.723**0.747**0.814**0.898**
    POC0.0130.737**0.771**0.725**0.886**0.912**
    MBC−0.2380.596*0.706*0.859**0.880**0.949**0.798**
    DOC−0.5420.3730.817**0.5480.817**0.5630.672*0.593*
      注:*,P < 0.05(双尾);**,P < 0.01(双尾)。TOC,土壤有机碳;DOC,土壤可溶性有机碳;ROC,土壤易氧化有机碳;MBC,土壤微生物量碳;POC土壤颗粒有机碳;TN,土壤全氮。
      Notes: *, P < 0.05(双尾);**, P < 0.01(双尾).TOC, soil organic carbon; DOC, soil soluble organic carbon; ROC, soil easily oxidizable organic carbon; MBC, soil microbial biomass carbon; POC, soil particulate organic carbon; TN, soil total nitrogen.
    下载: 导出CSV
  • [1]

    Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemical Cycles, 1994, 8(3): 279-294. doi: 10.1029/94GB00993
    [2]

    Montagnini F, Nair P. Carbon sequestration: An underexploited environmental benefit of agroforestry systems[J]. Agroforestry Systems, 2004, 61-62(1-3): 281. doi: 10.1023/B:AGFO.0000029005.92691.79
    [3]

    Johnson D W, Curtis P S. Effects of forest management on soil C and N storage: meta analysis[J]. Forest Ecology & Management, 2001, 140(2-3): 227-238.
    [4]

    Deb S, Bhadoria P, Mandal B, et al. Soil organic carbon: Towards better soil health, productivity and climate change mitigation[J]. Climate Change and Environmental Sustainability, 2015, 3(1): 26-34. doi: 10.5958/2320-642X.2015.00003.4
    [5] 沈 宏, 曹志洪. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3):32-38. doi: 10.3321/j.issn:1000-4890.1999.03.008

    [6]

    Wang Q K, Wang S L, Feng Z W. Comparison of active soil organic carbon pool between Chinese fir plantations and evergreen broadleaved forests[J]. Journal of Beijing Forestry University, 2006, 28(5): 1-6.
    [7] 张宇辰, 彭道黎. 间伐对塞罕坝华北落叶松人工林土壤活性有机碳的影响[J]. 应用与环境生物学报, 2020, 26(4):961-968.

    [8]

    Romeo F, Settineri G, Sidari M, et al. Responses of soil quality indicators to innovative and traditional thinning in a beech (Fagus sylvatica L.) forest[J]. Forest Ecology and Management, 2020, 465: 118106.
    [9]

    Lull C, Bautista I, A Lidón, et al. Temporal effects of thinning on soil organic carbon pools, basal respiration and enzyme activities in a Mediterranean Holm oak forest[J]. Forest Ecology and Management, 2020, 464: 118088.
    [10]

    Gong C, Tan Q, Liu G, et al. Forest thinning increases soil carbon stocks in China[J]. Forest Ecology and Management, 2021, 482: 118812. doi: 10.1016/j.foreco.2020.118812
    [11]

    Zhang X, Guan D, Li W, et al. The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis[J]. Forest Ecology and Management, 2018, 429: 36-43. doi: 10.1016/j.foreco.2018.06.027
    [12]

    Kim S, Li G, Han S H, et al. Microbial biomass and enzymatic responses to temperate oak and larch forest thinning: Influential factors for the site-specific changes[J]. The Science of the Total Environment, 2019, 651: 2068-2079. doi: 10.1016/j.scitotenv.2018.10.153
    [13]

    Ma J, Kang F, Cheng X, et al. Moderate thinning increases soil nitrogen in a Larix principis-rupprechtii (Pinaceae) plantations[J]. Geoderma, 2018, 329: 118-128. doi: 10.1016/j.geoderma.2018.05.021
    [14] 胡 满, 曾思齐, 龙时胜. 青冈栎次生林主要树种空间分布格局及其关联性研究[J]. 中南林业科技大学学报, 2019, 39(6):66-71.

    [15] 吴晓玲, 张世熔, 蒲玉琳, 等. 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析[J]. 中国生态农业学报(中英文), 2019, 27(10):1607-1616.

    [16]

    Garten C T, Post W M, Hanson P J, et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry, 1999, 45(2): 115-145.
    [17]

    Blair G, Lefroy R, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 393-406.
    [18] 窦艳星, 侯 琳, 马红红, 等. 间伐对松栎混交林土壤活性有机碳的影响[J]. 中南林业科技大学学报, 2015, 35(5):64-69.

    [19] 张文雯, 韩海荣, 程小琴, 等. 间伐对华北落叶松人工林土壤活性有机碳含量及酶活性的影响[J]. 应用生态学报, 2019, 30(10):3347-3355.

    [20]

    Baena C W, M Andrés-Abellán, Lucas-Borja M E, et al. Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain)[J]. Forest Ecology & Management, 2013, 308: 223-230.
    [21] 习 丹, 余泽平, 熊 勇, 等. 江西官山常绿阔叶林土壤有机碳组分沿海拔的变化[J]. 应用生态学报, 2020, 31(10):3349-3356.

    [22] 翟凯燕, 马婷瑶, 金雪梅, 等. 间伐对马尾松人工林土壤活性有机碳的影响[J]. 生态学杂志, 2017, 36(3):609-615.

    [23]

    Cheng X R, Yu M, Li Z. Short term effects of thinning on soil organic carbon fractions, soil properties, and forest floor in Cunninghamia lanceolata plantations[J]. Journal of Soil Science and Environmental Management, 2018, 9(2): 21-29. doi: 10.5897/JSSEM2017.0661
    [24]

    Ares A, Neill A R, Puettmann K J. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands[J]. Forest Ecology & Management, 2010, 260(7): 1104-1113.
    [25]

    Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 2007, 137(3-4): 253-268. doi: 10.1016/j.geoderma.2006.09.003
    [26] 房 飞, 唐海萍, 李滨勇. 不同土地利用方式对土壤有机碳及其组分影响研究[J]. 生态环境学报, 2013, 22(11):1774-1779. doi: 10.3969/j.issn.1674-5906.2013.11.005

    [27] 徐 侠, 王 丰, 栾以玲, 等. 武夷山不同海拔植被土壤易氧化碳[J]. 生态学杂志, 2008, 27(7):1115-1121.

    [28] 袁 喆, 罗承德, 李贤伟, 等. 间伐强度对川西亚高山人工云杉林土壤易氧化碳及碳库管理指数的影响[J]. 水土保持学报, 2010, 24(6):127-131.

    [29] 雷 蕾, 肖文发, 曾立雄, 等. 马尾松林土壤微生群落结构对不同营林处理的响应[J]. 生态学报, 2018, 38(16):229-239.

    [30] 宋 影, 辜夕容, 严海元, 等. 中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态[J]. 环境科学, 2014, 35(3):1151-1158.

    [31] 陈信力, 刁娇娇, 郑 婷, 等. 间伐对重阳木人工林土壤微生物量碳氮和酶活性影响[J]. 林业科技开发, 2014, 28(2):59-63.

    [32] 郭传阳, 林开敏, 郑鸣鸣, 等. 间伐对杉木人工林土壤微生物生物量碳氮的短期影响[J]. 南京林业大学学报:自然科学版, 2020, 44(5):125-131.

    [33] 郑宪志, 张星星, 林伟盛, 等. 不同树种对土壤可溶性有机碳和微生物生物量碳的影响[J]. 福建师大学报:自然科学版, 2018, 34(6):86-93.

    [34] 张 雪, 韩士杰, 王树起, 等. 长白山白桦林不同演替阶段土壤有机碳组分的变化[J]. 生态学杂志, 2016, 35(2):282-289.

  • [1] 赖家明李开志黄从德张健杨万勤 . 不同改造措施对马尾松低效林土壤活性有机碳的影响. 林业科学研究, 2013, 26(2): 167-173.
    [2] 薛丽佳高人杨玉盛尹云锋马红亮刘燕萍 . 武夷山土壤有机碳和黑碳的分配规律研究. 林业科学研究, 2011, 24(3): 399-403.
    [3] 马少杰李正才周本智格日乐图孔维健安艳飞 . 北亚热带天然次生林群落演替对土壤有机碳的影响. 林业科学研究, 2010, 23(6): 845-849.
    [4] 陈立新李刚刘云超段文标孙双红李帆帆李少博毛弘宇 . 外源有机物与温度耦合作用对红松阔叶混交林土壤有机碳的激发效应. 林业科学研究, 2017, 30(5): 797-804. doi: 10.13275/j.cnki.lykxyj.2017.05.013
    [5] 丁波丁贵杰赵熙州杨永彰 . 间伐对杉木人工林土壤酶活性及微生物的影响. 林业科学研究, 2017, 30(6): 1059-1065. doi: 10.13275/j.cnki.lykxyj.2017.06.025
    [6] 徐耀文姜仲茂武锋杨倩梨廖宝文 . 翠亨湿地无瓣海桑人工林土壤有机碳分布特征及与土壤理化指标相关性. 林业科学研究, 2020, 33(1): 62-68. doi: 10.13275/j.cnki.lykxyj.2020.01.008
    [7] 刘春华吴东梅刘雨晖陈辉沈宝贵蒋宗垲刘小飞 . 氮沉降对米槠天然林土壤有机碳及微生物群落结构的影响. 林业科学研究, 2021, 34(2): 42-49. doi: 10.13275/j.cnki.lykxyj.2021.02.005
    [8] 徐海东苑海静熊静虞木奎成向荣 . 杉阔异龄复层林对土壤团聚体稳定性和有机碳及养分储量的影响. 林业科学研究, 2020, 33(3): 107-115. doi: 10.13275/j.cnki.lykxyj.2020.03.014
    [9] 张雨洁王斌李正才黄盛怡原雅楠秦一心 . 施肥措施对古香榧林地土壤活性有机碳和养分的影响. 林业科学研究, 2019, 32(2): 87-93. doi: 10.13275/j.cnki.lykxyj.2019.02.013
    [10] 赵志霞李正才周君刚程彩芳赵睿宇孙娇娇 . 火烧对北亚热带杉木林土壤有机碳的影响. 林业科学研究, 2016, 29(2): 301-305.
    [11] 唐国勇李昆孙永玉张春华 . 土地利用方式对土壤有机碳和碳库管理指数的影响. 林业科学研究, 2011, 24(6): 754-759.
    [12] 李正才徐德应傅懋毅孙雪忠奚金荣 . 北亚热带土地利用变化对土壤有机碳垂直分布特征及储量的影响. 林业科学研究, 2007, 20(6): 744-749.
    [13] 王健健赵学春来利明朱林海王永吉周继华姜联合马远见赵春强郑元润 . 新疆三工河流域柽柳群落细根生产与周转对土壤有机碳的贡献. 林业科学研究, 2014, 27(6): 809-814.
    [14] 姚甲宝曾平生袁小平吴建国楚秀丽周志春 . 间伐强度对木荷-萌芽杉木中龄混交林生长和林分结构的影响. 林业科学研究, 2017, 30(3): 511-517. doi: 10.13275/j.cnki.lykxyj.2017.03.021
    [15] 罗云建张小全 . 多代连栽人工林碳贮量的变化. 林业科学研究, 2006, 19(6): 791-798.
    [16] 雷蕾肖文发 . 采伐对森林土壤碳库影响的不确定性. 林业科学研究, 2015, 28(6): 892-899.
    [17] 马和平郭其强刘合满钱登锋 . 西藏色季拉山西坡不同海拔梯度表层土壤碳氮变化特性的研究. 林业科学研究, 2013, 26(2): 240-246.
    [18] 蔡坚潘文冯水冯顺简陈瑞炳 . 间伐强度对湿地松木材性质的影响规律研究. 林业科学研究, 2002, 15(3): 297-303.
    [19] 李帅锋苏建荣刘万德郎学东黄小波贾呈鑫卓童清唐红燕 . 思茅松人工林土壤有机碳和氮储量变化. 林业科学研究, 2015, 28(6): 810-817.
    [20] 贾呈鑫卓李帅锋苏建荣 . 地形因子对思茅松人工林土壤有机碳储量的影响. 林业科学研究, 2016, 29(3): 424-429.
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  413
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 录用日期:  2021-09-15
  • 网络出版日期:  2021-10-12
  • 刊出日期:  2021-12-20

青冈栎次生林土壤活性有机碳对间伐强度的响应

    通讯作者: 姜春前, jiangchq@caf.ac.cn
    作者简介: 齐梦娟,硕士,主要研究方向:森林培育。E-mail:17863806075@163.com
  • 1. 中国林业科学研究院林业研究所,北京 100091
  • 2. 湖南省慈利县林业局,湖南 张家界 427200

摘要:  目的 探索不同间伐强度对青冈栎次生林土壤活性有机碳的响应。 方法 以湖南省天心阁林场青冈栎次生林为研究对象,于2018年设置4种间伐强度(对照:0%;弱度间伐:15%;中度间伐:30%;强度间伐:50%),探讨不同间伐强度下4种土壤活性有机碳(土壤微生物量碳、可溶性有机碳、颗粒有机碳和易氧化有机碳)含量变化及其在总有机碳中的分配比例。 结果 (1)与对照样地相比,中度间伐和强度间伐显著提高了土壤总有机碳含量,弱度间伐降低了土壤总有机碳含量;(2)间伐提高了土壤微生物量碳的含量,降低了可溶性有机碳的含量,土壤颗粒有机碳和易氧化有机碳含量在不同间伐处理下的变化趋势与总有机碳一致;(3)不同间伐强度下土壤微生物量碳、可溶性有机碳、颗粒有机碳和易氧化有机碳的分配比例分别为:0.23%~0.54%、0.40%~0.78%、16.54%~47.30%和6.46%~14.29%,强度间伐显著提高了微生物量碳、颗粒有机碳和易氧化有机碳分配比例,降低了可溶性有机碳的分配比例,表明间伐提高了不稳定碳的比例,且颗粒有机碳对间伐处理更敏感;(4)相关性分析表明,土壤总有机碳与各活性有机碳组分间呈极显著正相关,且活性有机碳与土壤含水量和总氮含量呈正相关;土壤活性组分碳间转化依赖于总有机碳量的变化,且在一定的水分和氮素条件下易发生分解转变。 结论 不同间伐处理对土壤有机碳及其活性组分的含量有显著影响,强度间伐显著提高土壤有机碳及其活性组分的含量,加快土壤中的碳素循环。

English Abstract

  • 土壤容纳生态系统中约2/3的碳,是全球最大的碳汇[1-2]。土壤有机碳与森林生态系统的物质循环和能量流动密切相关[3-4],但土壤有机碳总量的变化非常缓慢,很难在短期内观测到它的细微变化。土壤活性有机碳是土壤有机碳中周转速率较快,分解速度较强的部分[5],它直接参与土壤中碳循环的生态过程,为微生物活动提供能量与养分[6]。土壤活性有机碳能灵敏地反映出土壤管理措施和环境改变所引起的土壤碳库的波动,更有助于研究土壤有机碳早期的动态变化,维持土壤碳库平衡已经成为森林可持续经营的重要参考指标之一[7]

    研究表明,间伐通过调控林分密度和结构改变了森林生态系统内的小气候[8],增加了土壤温度,减少了土壤湿度,影响土壤含水量、容重、养分等理化性质;而土壤活性有机碳含量主要受土壤有机碳含量的影响和土壤温湿度等的调控[7],土壤的生物化学性质对土壤有机质的分解与转化至关重要[9]。近年来,间伐对土壤有机质及其活性组分的影响进行了一些研究,Gong等[10]分析了77项已发表的森林间伐的研究,发现间伐后森林土壤碳储量明显高于其他地区;而Zhang等[11]分析发现,间伐对土壤总有机碳和土壤微生物量碳没有显著的影响,但提高了土壤全氮含量;Kim等[12]强调间伐后土壤性质的改变影响了橡树(Quercus palustris Münchh.)和落叶松林(Larix gmelinii (Rupr.) Kuzen.)的土壤微生物量碳。Ma等[13]发现,中等间伐强度下土壤有机质含量与易氧化有机碳含量最高,且易氧化有机碳是土壤有机质改变的主要驱动力。因此,土壤有机碳库及其活性碳库的变化对评价间伐后森林土壤生产的稳定性和可持续性至关重要[8]

    青冈栎(Cyclobalanopsis glauca (Thunb.) Oerst.)是我国亚热带常绿阔叶林的主要优势树种之一[14],湖南省慈利县天心阁林场青冈栎次生林多为萌生矮林,严重影响森林系统服务功能。探讨不同间伐强度对土壤活性有机碳含量(土壤微生物量碳、可溶性有机碳、颗粒有机碳和易氧化有机碳)及其在土壤总有机碳中比例的影响,进一步了解间伐后林地土壤活性有机碳的变化特征,以期为青冈栎次生林的可持续经营提供基础数据。

    • 研究区位于湖南省慈利、桃源两县交界处天心阁林场(111°10′26″~111°11′57″ E,29°13′16″~29°14′31″ N)。地形以丘陵为主,成土母岩为板页岩,土壤为红壤,土层较薄,立地条件中等。林场地处中亚热带季风湿润气候区,气候温和,雨量充沛,光照充足。年平均气温18.2℃,年降水量1 615.1 mm,相对湿度75.8%。地带性植被为常绿阔叶林,研究区前身为集体林场,现为采伐后形成的次生林,郁闭度高,多萌生,平均林龄22 a。优势树种有青冈栎、黄檀(Dalbergia hupeana Hance)、柯(Lithocarpus glaber (Thunb.) Nakai.)、马尾松(Pinus massoniana Lamb.);灌木植物以铁仔(Myrsine africana Linn.)、崖花海桐(Pittosporum illicioides Makino)、油茶(Camellia oleifera Abel.)等为主;草本层主要有青绿苔草(Carex breviculmis R. Br.)、阔鳞鳞毛蕨(Dryopteris championii (Benth.) C. Chr.)和鸡矢藤(Paederia scandens (Lour.) Merr.)等。

    • 2018年7月,在天心阁林场选取坡度、坡向及海拔相似的样地,根据间伐蓄积量与样地总蓄积量之比进行间伐作业,按照随机区组设计,设置4种间伐处理:弱度间伐(15%,LIT)、中度间伐(30%,MIT)、强度间伐(50%,HIT)、对照(0%,CK)。在4种间伐处理的样地内,分别设置40 m × 25 m的试验样地并重复3次。样地基本信息见表1

      表 1  样地基本概况

      Table 1.  Basic overview of sample plots

      处理
      Treatment
      坡向
      Aspect
      坡度
      Slope/(°)
      平均海拔
      Average
      altitude/m
      林分密度
      Density/
      (株·hm−2)
      平均胸径
      Average DBH/
      cm
      平均树高
      Average
      height/m
      郁闭度
      Canopy
      density
      灌木层盖度
      Coverage
      degree/%
      草本层盖度
      Coverage
      degree/%
      CK东偏北28°251771 37110.9311.750.9530.1313.33
      LIT东偏北30°231731 26412.5510.140.8530.0736.87
      MIT东偏北29°241891 10912.0711.560.7552.1034.90
      HIT东偏北26°251691 05513.1612.070.6057.1351.57
    • 2020年8月下旬,采用分层多点混合取样法。每个处理样地内随机设置5个取样点,去除地表凋落物后进行取样,按0~10、10~20、20~30 cm分3层采集土样,将同一样地同一土层的5个土壤样品充分混匀并去掉土壤中可见植物根系、残体和碎石,后按四分法去除多余土样,用自封袋带回实验室分析。取一部分土壤置于冰箱中4℃保存,用于测定土壤微生物量碳和可溶性有机碳,其余土壤风干后过2 mm土筛用于测定其余指标。

    • 土壤总有机碳、氮含量使用元素分析仪(VARIO MAX CN by Germany Elementary)测定。

    • 土壤微生物量碳采用氯仿熏蒸后用水体碳氮仪(Vario TOC)测定[15];可溶性有机碳采用0.5 mol·L−1硫酸钾溶液浸提后用水体碳氮仪测定[15];颗粒有机碳采用5 g·L−1六偏磷酸钠提取法测定[16];易氧化有机碳采用333 mmol·L−1高锰酸钾溶液处理在565 nm下比色测定[17]

    • 所有数据采用Excel 2016进行整理,用SPSS 22.0进行单因素方差分析(One-way ANOVA)、差异性检验和多重比较(LSD),显著水平设为0.05。用origin 2017作图,采用Pearson进行相关性分析。

    • 表2可知:不同间伐强度下各土层土壤总有机碳(TOC)含量为11.41~39.96 g∙kg−1。与对照(CK)相比,0~30 cm土层中,中度间伐(MIT)和强度间伐(HIT)的TOC含量增加,弱度间伐(LIT)的TOC含量降低,即HIT > MIT > CK > LIT。0~10 cm土层中,HIT处理下TOC含量与CK和LIT处理差异显著,TOC含量分别高18.3%和38.6%,MIT比LIT高25.8%,HIT与MIT处理间差异不显著;10~20 cm土层,不同间伐处理间TOC含量差异不显著;20~30 cm土层,CK处理下TOC含量最高,且与HIT差异显著(P < 0.05),与LIT和MIT差异不显著。在垂直剖面,不同土层间土壤TOC含量存在差异,并且不同间伐处理下土壤TOC含量均表现为0~10 cm土层显著高于10~20、20~30 cm土层(P < 0.05)。

      表 2  土壤总有机碳及碳氮比(均值 ± 标准误,下同)

      Table 2.  Soil total organic carbon and carbon to nitrogen ratio(Mean ± SE. The same below.)

      处理
      Treatment
      土层
      Soil layer/cm
      总有机碳
      TOC/(g∙kg−1)
      碳/氮
      C/N
      CK0~1033.78 ± 1.00 Abc12.98 ± 1.00 Abc
      10~2016.65 ± 3.11 Ba11.40 ± 0.65 Ba
      20~3016.43 ± 1.24 Ba11.48 ± 0.44 Ba
      LIT0~1028.83 ± 0.89 Ac10.66 ± 1.43 Ac
      10~2019.65 ± 5.85 Ba13.27 ± 4.82 Aa
      20~3014.37 ± 2.62 Bab10.70 ± 2.45 Aa
      MIT0~1036.26 ± 5.05 Aab16.61 ± 0.87 Aa
      10~2016.89 ± 0.44 Ba10.59 ± 1.86 Ba
      20~3014.20 ± 2.62 Bab11.21 ± 2.65 Ba
      HIT0~1039.96 ± 1.20 Aa14.07 ± 0.89 Aab
      10~2019.14 ± 5.32 Ba11.24 ± 1.09 Ba
      20~3011.41 ± 2.49 Cb9.64 ± 0.87 Ba
        注:不同大写字母表示同一间伐强度不同土层间差异显著(P < 0.05);不同小写字母表示同一土层不同间伐强度间差异显著(P < 0.05)。下同。
        Notes:The difference of cutting strength between different soil layers was significant (P < 0.05), and different lowercase letters showed significant difference between different cutting strength of the same soil layer (P < 0.05).The same below.
    • 图1A可知:不同间伐强度下各土层土壤微生物量碳(MBC)含量为38.65~121.04 mg∙kg−1。与对照(CK)相比,0~30 cm土层中,间伐处理后的土壤MBC总含量均有所增加,随间伐强度的增大呈增加的趋势,即HIT > MIT > LIT > CK。0~10 cm土层,MIT和HIT处理的土壤MBC含量均与CK处理差异显著,分别是CK的156.3%和166.5%(P < 0.05),LIT增加了MBC含量,但与CK差异不显著;10~20 cm土层,HIT处理的MBC含量与CK和LIT的差异显著,分别比CK和LIT增加了48.2%和58.3%(P < 0.05),MIT处理与其他处理间差异不显著;20~30 cm土层,不同间伐处理间及与CK间均差异不显著。在垂直剖面,土壤MBC含量主要集中在0~10 cm土层,且随着土层的加深而递减;0~10 cm土层与10~20、20~30 cm土层的土壤MBC含量差异显著(P < 0.05)。

      图  1  不同间伐处理下土壤活性有机碳组分含量变化

      Figure 1.  Changes of soil labile organic carbon content under different thinning treatments

    • 图1B可知:不同间伐强度下各土层土壤可溶性有机碳(DOC)含量为79.93~239.21 mg∙kg−1。与CK相比,0~30 cm土层中,间伐处理后土壤的DOC均显著降低(P < 0.05)。0~10 cm土层,土壤DOC含量表现为CK > HIT > MIT > LIT,CK土壤的DOC含量显著高于间伐处理,比LIT、MIT、HIT分别高出72.9%、51.7%、48.8%(P < 0.05);10~20 cm和20~30 cm土层土壤的DOC含量在不同间伐强度间差异不显著。在垂直剖面,同一间伐强度下,0~10 cm土层土壤的DOC含量与10~20、20~30 cm土壤的DOC含量差异显著(P < 0.05),即随着土层加深,土壤的DOC含量下降。

    • 图1C可知:不同间伐强度下,各层土壤颗粒有机碳(POC)含量为2.51~16.22 g∙kg−1,与对照(CK)相比,0~30 cm土层中,LIT降低了POC含量,MIT和HIT增加了POC含量,即间伐后POC含量为HIT > MIT > CK > LIT。0~10 cm土层,与CK相比,HIT和MIT显著提高了POC的含量,分别比CK增加了61.3%和28.6%(P < 0.05),LIT显著降低了POC的含量,是CK的34.5%(P < 0.05);10~20 cm土层,HIT显著提高了POC的含量,是CK的225.7%(P < 0.05),MIT提高了POC含量,LIT降低了POC含量,但MIT、LIT与CK差异不显著;20~30 cm土层,不同间伐强度间POC含量差异不显著。

    • 图1D可知:不同间伐强度下各土层土壤易氧化有机碳(ROC)含量为1.19~4.46 g∙kg−1,与对照(CK)相比,0~30 cm土层中,MIT和HIT的ROC含量增加,LIT的ROC含量无显著变化。0~10 cm土层,ROC含量为HIT > MIT > LIT > CK,MIT和HIT显著提高了ROC的含量,分别为CK的201.2%和204.6%(P < 0.05),LIT与CK间差异不显著;10~20 cm土层,HIT比CK增加了17.6%;20~30 cm土层,LIT和HIT分别比CK增加了12.1%和12.3%。在垂直剖面上,同一间伐强度下ROC含量随土层加深降低,且0~10 cm土层与10~20、20~30 cm的ROC含量差异显著(P < 0.05)。

    • 表3可知:0~30 cm土层中,土壤微生物量碳(MBC)的分配比例为0.23%~0.54%;0~10 cm土层,MBC分配比例随着间伐强度的增加呈先增后降的趋势,在MIT下MBC在总有机碳(TOC)中的比例最高;10~20 cm土层,MBC在TOC中所占比例没有同一趋势,且相互之间差异不显著;20~30 cm土层,不同间伐处理后MBC在TOC中所占比例均有所增加,HIT显著提高了MBC在TOC中所占比例。土壤可溶性有机碳(DOC)的分配比例为0.40%~0.78%,间伐处理降低了DOC在TOC中的比例。POC的分配比例为16.54%~47.30%;0~10、10~20 cm土层,不同间伐处理的POC分配比例先降后升,MIT和HIT提高了POC在TOC中所占比例,LIT处理的POC所占比例则低于CK;20~30 cm土层,LIT、MIT和HIT均提高了POC在TOC中所占比例。ROC的分配比例为6.46%~14.29%;0~10 cm土层,MIT和HIT显著提高了ROC在TOC中的比例;10~20、20~30 cm 土层,ROC在TOC中所占比例没有同一趋势,且相互之间差异不显著。

      表 3  不同间伐强度下土壤活性有机碳占总有机碳比例

      Table 3.  The ratio of soil labile organic carbon to total organic carbon under different thinning intensity

      处理
      Treatment
      土层深度
      Soil layer/cm
      土壤活性有机碳占总有机碳的比例
      The ratio of soil active organic carbon to total organic carbon/%
      颗粒有机碳
      POC
      易氧化有机碳
      ROC
      微生物量碳
      MBC
      可溶性有机碳
      DOC
      CK0~1029.83 ± 0.042 Aab6.46 ± 0.01 Ab0.23 ± 0.38 Bb0.71 ± 0.19 Aa
      10~2024.95 ± 0.084 ABb9.95 ± 0.03 Aa0.32 ± 0.28 Aa0.76 ± 1.51 Aa
      20~3016.54 ± 0.060 Bb8.07 ± 0.03 Aa0.32 ± 0.42 Ab0.59 ± 1.27 Aa
      LIT0~1022.89 ± 0.054 Ab7.67 ± 0.01 Aab0.29 ± 0.47 Aab0.48 ± 0.88 Ab
      10~2020.40 ± 0.050 Ab7.73 ± 0.02 Aa0.27 ± 0.87 Aa0.52 ± 0.64 Aa
      20~3018.08 ± 0.061 Ab10.47 ± 0.03 Aa0.40 ± 0.69 Aab0.65 ± 1.53 Aa
      MIT0~1035.94 ± 0.061 Aa14.29 ± 0.07 Aa0.34 ± 0.87 Aa0.45 ± 1.34 Ab
      10~2037.20 ± 0.153 Aab9.37 ± 0.05 Aa0.33 ± 0.77 Aa0.59 ± 1.36 Aa
      20~3026.62 ± 0.118 Aab8.54 ± 0.05 Aa0.34 ± 0.27 Aab0.56 ± 1.35 Aa
      HIT0~1040.68 ± 0.068 Aa12.85 ± 0.04 Aab0.32 ± 0.27 Aab0.40 ± 0.46 Bb
      10~2047.30 ± 0.050 Aa8.22 ± 0.02 Aa0.40 ± 1.22 Aa0.60 ± 1.12 ABa
      20~3042.04 ± 0.089 Aa12.72 ± 0.01 Aa0.54 ± 1.96 Aa0.78 ± 2.20 Aa
    • 表4可知:土壤含水量与土壤ROC和POC呈极显著正相关(P < 0.01),与土壤TOC和MBC呈显著正相关(P < 0.05);土壤TN与土壤MBC呈显著相关(P < 0.05),与土壤TOC及其他活性组分碳间呈极显著正相关(P < 0.01);土壤C/N与ROC、POC和MBC均呈极显著正相关(P < 0.01);土壤TOC与其活性组分碳间呈极显著正相关(P < 0.01)。除土壤DOC外,ROC与POC和MBC两两之间呈极显著正相关(P < 0.01),土壤DOC与POC和MBC呈显著正相关(P < 0.05),与ROC相关性不显著。土壤pH与土壤活性有机碳组分相关性不显著。

      表 4  土壤有机碳及活性组分与理化因子相关性分析

      Table 4.  Correlation analysis of soil organic carbon and labile components and soil physicochemical factors

      pH含水量TNC/NTOCROCPOCMBC
      TOC−0.3950.592*0.926**0.804**
      ROC−0.0950.723**0.747**0.814**0.898**
      POC0.0130.737**0.771**0.725**0.886**0.912**
      MBC−0.2380.596*0.706*0.859**0.880**0.949**0.798**
      DOC−0.5420.3730.817**0.5480.817**0.5630.672*0.593*
        注:*,P < 0.05(双尾);**,P < 0.01(双尾)。TOC,土壤有机碳;DOC,土壤可溶性有机碳;ROC,土壤易氧化有机碳;MBC,土壤微生物量碳;POC土壤颗粒有机碳;TN,土壤全氮。
        Notes: *, P < 0.05(双尾);**, P < 0.01(双尾).TOC, soil organic carbon; DOC, soil soluble organic carbon; ROC, soil easily oxidizable organic carbon; MBC, soil microbial biomass carbon; POC, soil particulate organic carbon; TN, soil total nitrogen.
    • 青冈栎次生林土壤有机碳主要聚集在土壤表层,随着土层的加深而下降,符合一般规律[18]。有研究发现,间伐提高了土壤有机碳含量[19-20]。本研究中,随着间伐强度增大土壤有机碳含量呈先降后升的趋势,原因可能为本研究区优势树种为青冈栎,且多为萌生矮林,凋落物数量少,而凋落物又是土壤有机碳的重要来源[21],强度间伐极大提高了林下灌木与草本的种类及覆盖度(表1),为微生物提供碳源,补充了森林表层有机碳的输入。C/N反映微生物对有机碳的矿化分解速率[22],在弱度间伐下土壤C/N明显低于对照林地,加快土壤有机碳的分解,且低植被覆盖度减少了碳源的输入,导致在弱度间伐(15%)下有机碳含量下降。

      有研究表明,间伐处理下土壤颗粒有机碳(POC)含量明显高于对照林地[13,23]。本研究表明,强度间伐显著提高了POC含量,弱度间伐降低了其含量,与土壤总有机碳的变化一致(图1C)。原因可能为POC在总有机碳中的分配比例最高,而且植物凋落物的分解是POC的主要来源[24],间伐短期后林窗促进了林下植被的发育,灌草凋落物的增加补充了乔木层碳含量的损失[25]。不同间伐强度下,易氧化有机碳(ROC)分配比例随土层的加深呈先降后升趋势(中度间伐除外)(表3)。可能是因为一方面相比于高郁闭度对照林地,间伐改善了林内环境提高了灌草层覆盖度,草本植物细根系发达,主要集中在表层,根系分泌物及其自身的分解为微生物提供了丰富的能源物质[26],所以,0~10 cm土层的ROC含量较高;另一方面,ROC与土壤含水量极显著相关,中度间伐与强度间伐下土壤含水率高,ROC随着水分下渗到20~30 cm土层,被微生物固持,导致ROC的含量变高[27-28]

      土壤微生物量碳(MBC)含量随间伐强度的增加呈增加的趋势,与雷蕾等[29]研究马尾松林土壤微生物群落的结果相反,这可能是因为马尾松是先锋树种,木质素含量与C含量高,凋落物分解慢,青冈栎凋落物中木质素含量低,加快了凋落物的分解[30],改善了土壤质量,提高了土壤微生物的活性;但MBC在总有机碳中的分配比例低,表明MBC含量在很大程度上依赖于总有机碳及其他活性有机碳组分的分解与转化[31-32]

      本研究显示,相比于对照处理,间伐后土壤可溶性有机碳(DOC)的含量下降,且不同间伐强度间DOC含量差异不显著。可能是因为DOC既是微生物新陈代谢的产物又是微生物可利用的底物[33]。微生物能快速利用水溶性碳转换成自身生物量碳,后间伐引起的温度湿度变化促进微生物呼吸,加速对凋落物的分解,补充土壤中可溶性碳含量,以抵消间伐引起的DOC的变化[12]。DOC相比于其他活性碳组分,其含量与所占有机碳比例显著低于POC和ROC(表3),所以,间伐后降低POC和ROC含量的增加抵消了DOC含量的降低,使间伐后土壤活性有机碳含量增加。

      对比不同间伐处理下POC和ROC在总有机碳中的分配比例发现,POC与ROC在土壤有机碳中的分配比例较高,表明这2种活性碳组分更能有效的表示土壤碳库的活跃度,而且POC的分配比例范围远大于ROC,说明POC对间伐处理的变化更敏感。这与翟凯燕等[22]对马尾松土壤活性有机碳的研究结果不同,其研究发现ROC对间伐处理更敏感,这可能与植被类型、林分演替阶段及土壤条件有关[34],有待进一步研究凋落物分解与POC和ROC的关系。中、强度间伐后土壤活性有机碳的含量明显增加,可能是因为活性有机碳库受季节影响较强,在秋冬季节达到高峰[30],而本次取样时间为8月,且产生的林窗会增加林地表面光照,促进林下植被的发育,土壤微生物活性增强[24],凋落物分解加快,增加了活性有机碳在总有机碳库中的的占比。

    • 在青冈栎次生林的萌生林中,强度间伐显著提高土壤有机碳含量,有利于有机碳的积累。同时土壤活性有机碳含量与土壤含水量和氮素含量呈显著正相关,在适度的环境因素下易转换为活性有机碳,增加土壤中不稳定碳的含量。土壤颗粒有机碳(POC)对碳库的波动更敏感,土壤微生物量碳(MBC)对土壤有机碳早期变化更灵敏,土壤颗粒有机碳(POC)和微生物量碳(MBC)可以用作表征土壤碳库和肥力的指标。因此,在未来全球氮沉降的背景下,间伐对土壤活性有机碳的影响应更关注土壤颗粒有机碳(POC)与微生物量碳(MBC)的变化。

参考文献 (34)

目录

    /

    返回文章
    返回