• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏冠对树冠垂直投影面积计算的影响

孙钊 潘磊 乔晶晶 丁志丹 孙玉军 王轶夫

引用本文:
Citation:

偏冠对树冠垂直投影面积计算的影响

    通讯作者: 王轶夫, wyfbing@163.com
  • 中图分类号: S758.5

Effect of Partial Crown on Calculation of Vertical Projection Area of Crown

    Corresponding author: WANG Yi-fu, wyfbing@163.com
  • CLC number: S758.5

  • 摘要: 目的 针对树冠结构复杂、形状不规则等问题,实现树冠垂直投影面积自动计算并提高树冠投影区域面积计算精度。 方法 以研究区453棵杉木为研究对象,精确测量每木8向冠幅。以Visualstudio和ArcGIS混合编程,进行树冠测量半径的坐标转换,采用Bezier曲线进行边界平滑,实现树冠垂直投影面积自动提取,并与传统计算方法进行对比分析。利用“圆度”来衡量树冠偏冠,并计算树冠偏冠指数与树冠垂直投影面积计算的相关性。 结果 本研究提出的树冠垂直投影面积计算方法能够计算出树冠真实面积,计算过程中测量冠幅半径数量越多,计算结果越接近真实冠幅面积,相比于椭圆的计算方法,把树冠视为正圆所得面积更接近真实面积。不同树冠垂直投影面积计算方法的结果和树冠垂直投影面积差值与树冠偏冠指数呈显著正相关。 结论 基于树冠投影区域形状的面积计算相较于传统的面积计算方法更加准确,为林业遥感冠幅提取精度验证提供了一种新思路。
  • 图 1  树冠半径测量示意图

    Figure 1.  Schematic diagram of crown radius measurement

    图 2  树冠半径转换为坐标示意图

    Figure 2.  Diagram of transforming crown radius into coordinates

    图 3  高阶Bezier曲线示意图

    Figure 3.  High order Bezier curve schematic

    图 4  树冠垂直投影面积计算结果(a. 冠幅直线连接, b. Bezier曲线平滑连接,c. 两种冠幅叠加比较)

    Figure 4.  Calculation results of vertical projection area of tree crown (a. Straight line connection of crown width, b. smooth connection of Bezier curve, c. superposition comparison of two kinds of crown width)

    图 5  不同树冠垂直投影面积计算方法和树冠垂直投影面积差异

    Figure 5.  Different calculation methods of canopy vertical projection area and difference of canopy vertical projection area

    图 6  每木CAI计算结果

    Figure 6.  CAI results of each tree

    表 1  CAI和树冠垂直投影面积计算差值相关性

    Table 1.  Correlation between CAI and vertical projection area of tree crown

    8向椭圆面积差值
    8-directional
    crown ellipse
    area D-value
    8向正圆面积差值
    8-directional
    crown circle
    area D-value
    4向椭圆面积差值
    4-directional
    crown ellipse
    area D-value
    4向正圆面积差值
    4-directional
    crown circle
    area D-value
    0.315**0.522**0.180**0.172**
    0.0000.0000.0000.000
    下载: 导出CSV
  • [1]

    Purves D W, Lichstein J W, Pacala S W. Crown plasticity and competition for canopy space: A new spatially implicit model parameterized for 250 North American tree species[J]. Plos One, 2007, 2(9): e870. doi: 10.1371/journal.pone.0000870
    [2]

    Ford E D, Sorrensen K A. Theory and Models of Inter-plant Competition As A Spatial Process[M]. New York. Springer US, 1992: 363 -407.
    [3] 于旭宅, 王瑞瑞, 陈伟杰. 改进分水岭算法在无人机遥感影像树冠分割中的应用[J]. 福建农林大学学报:自然科学版, 2018, 47(4):428-434.

    [4] 周远博, 卜元坤, 陈佳琦, 等. 黄龙山油松林水平空间结构分析[J]. 西北林学院学报, 2020, 35(1):45-53. doi: 10.3969/j.issn.1001-7461.2020.01.07

    [5] 李春明. 抚育间伐对人工林分生长的影响研究[D]. 北京: 中国林业科学研究院, 2003.

    [6]

    Aakala T, Shimatani K, Abe T, et al. Crown asymmetry in high latitude forests: disentangling the directional effects of tree competition and solar radiation[J]. Oikos, 2016, 125(7): 1035-1043. doi: 10.1111/oik.02858
    [7]

    Stefan Fleck, Inga Mölder, Mascha Jacob, et al. Comparison of conventional eight-point crown projections with LIDAR-based virtual crown projections in a temperate old-growth forest[J]. ANN FOREST, 2011, 68(7): 1173-1185. doi: 10.1007/s13595-011-0067-1
    [8]

    Xu W H, Su Z F, Feng Z K, et al. Comparison of conventional measurement and LiDAR-based measurement for crown structures[J]. Computers and Electronics in Agriculture, 2013, 98: 242-251. doi: 10.1016/j.compag.2013.08.015
    [9]

    Pretzsch H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures[J]. Forest Ecology and Management, 2014, 327: 251-264. doi: 10.1016/j.foreco.2014.04.027
    [10] 王 伟. 无人机影像森林信息提取与模型研建[D]. 北京: 北京林业大学, 2015.

    [11] 李 赟. 基于UAV高分影像的林木冠幅提取与蓄积量估测研究[D]. 南京: 南京林业大学, 2017.

    [12] 付凯婷. 无人机遥感技术估算桉树蓄积量的研究[D]. 南宁: 广西大学, 2015.

    [13] 陈忠明. 基于无人机影像的杉木蓄积量反演研究[D]. 长沙: 中南林业科技大学, 2019.

    [14] 贾鹏刚. 基于无人机影像的单木参数提取与胸径反演研究[D]. 杭州: 浙江农林大学, 2019.

    [15] 付 尧. 杉木人工林生态系统生物量及碳储量定量估测[D]. 北京: 北京林业大学, 2016.

    [16] 潘子超, 李天华, 阮 欣. 基于贝塞尔曲线的卵石骨料混凝土细观模型[J]. 同济大学学报:自然科学版, 2020, 48(5):638-644.

    [17] 余伶俐, 龙子威, 周开军. 基于贝塞尔曲线的机器人非时间轨迹跟踪方法[J]. 仪器仪表学报, 2016, 37(7):1564-1572. doi: 10.3969/j.issn.0254-3087.2016.07.016

    [18] 刘春香, 王金武, 唐 汉, 等. 基于贝塞尔曲线的液肥扎穴机构动力学分析与试验[J]. 农业机械学报, 2016, 47(5):115-122. doi: 10.6041/j.issn.1000-1298.2016.05.016

    [19]

    Kong F, Bi H, McLean M, et al. Comparative performances of new and existing indices of crown asymmetry: an evaluation using tall trees of Eucalyptus pilularis (Smith)[J]. J For Res, 32, 43–65 (2021).https://doi.org/10.1007/s11676-020-01180-0.
    [20] 孔繁琳. 桉树(Eucalyptus pilularis)人工林树冠偏冠指数的研究[D]. 哈尔滨: 东北林业大学, 2020.

    [21]

    Herrera-Navarro A, Jiménez-Hernández H, Peregrina-Barreto M, et al. A new measure of circularity based on the distribution of radius[J]. Computación y Sistemas, 2013, 17(4): 515-526.
    [22] 李 赟, 温小荣, 佘光辉, 等. 基于UAV高分影像的杨树冠幅提取及相关性研究[J]. 林业科学研究, 2017, 30(4):653-658.

  • [1] 潘磊王轶夫孙钊乔晶晶邱思玉孙玉军 . 长白落叶松树冠半径分布特征及其对竞争的响应. 林业科学研究, 2022, 35(3): 27-37. doi: 10.13275/j.cnki.lykxyj.2022.03.004
    [2] 鲜骏仁胡庭兴王开运张远彬朱雪梅徐精文 . 川西亚高山针叶林林窗边界木特征的研究. 林业科学研究, 2004, 17(5): 636-640.
    [3] 覃阳平张怀清陈永富蒋娴李永亮 . 基于简单竞争指数的杉木人工林树冠形状模拟. 林业科学研究, 2014, 27(3): 363-366.
    [4] 张晔珵张怀清陈永富李永亮马莉燕 . 基于树冠因子的林木竞争指数研究. 林业科学研究, 2016, 29(1): 80-84.
    [5] 张小全赵茂盛徐德应 . 杉木中龄林树冠叶面积密度空间分布及季节变化. 林业科学研究, 1999, 12(6): 612-619.
    [6] 尤磊唐守正宋新宇 . 基于圆柱面投影的树干表面重建算法. 林业科学研究, 2016, 29(6): 812-819.
    [7] 裴保华蒋湘宁郑均宝郑世锴刘奉觉 . 林分密度对Ⅰ-69杨树冠结构和光能分布的影响*. 林业科学研究, 1990, 3(3): 201-206.
    [8] 赵丹宁熊耀国宋露露王华曾旭徐作华 . 白花泡桐树冠结构、生长性状的选择对于形改良的影响*. 林业科学研究, 1995, 8(1): 82-87.
    [9] 曾杰郑海水翁启杰黄世能 . Nelder试验:大叶相思树冠生长、多干特征与密度的关系. 林业科学研究, 1999, 12(6): 577-580.
    [10] 曹永慧陈存及李生 . 间伐对杉莲混交林中乳源木莲树冠结构的影响. 林业科学研究, 2004, 17(5): 646-653.
    [11] 王小青刘杏娥任海青 . 树冠特征对小黑杨木材性质和生长量的影响研究. 林业科学研究, 2007, 20(6): 801-806.
    [12] 孔庆云辛学兵黄界 . 西藏色季拉山冷杉树冠营养元素的分布特征. 林业科学研究, 2007, 20(6): 807-813.
    [13] 范少辉刘广路张 群冯慧想宗亦尘任海青 . 华北沙地小黑杨林生物量及其与树冠关系的研究. 林业科学研究, 2010, 23(1): 71-76.
    [14] 蒲莹曾伟生 . 基于树高和树冠因子的立木材积模型研究. 林业科学研究, 2016, 29(2): 196-201.
    [15] 吴立栓胡建军苏雪辉李喜林赵自成 . 黑杨树冠雌花分布与少絮无性系的选择. 林业科学研究, 2014, 27(6): 769-775.
    [16] 赵婧文王健敏卢志兴付兴飞刀剑国陈又清 . 兼性互利关系对树冠层活动蚂蚁多样性的影响. 林业科学研究, 2016, 29(6): 807-811.
    [17] 李海波薛浩薛静茹曹希娟王林 . 中国沙棘树冠上中下部枝条的水碳代谢与生长结实性状研究. 林业科学研究, 2022, 35(5): 188-195. doi: 10.13275/j.cnki.lykxyj.2022.005.021
    [18] 李赟温小荣佘光辉林国忠 . 基于UAV高分影像的杨树冠幅提取及相关性研究. 林业科学研究, 2017, 30(4): 653-658. doi: 10.13275/j.cnki.lykxyj.2017.04.017
    [19] 马载阳张怀清李永亮杨廷栋陈中良李思佳 . 基于空间结构的杉木树冠生长可视化模拟. 林业科学研究, 2018, 31(4): 150-157. doi: 10.13275/j.cnki.lykxyj.2018.04.021
    [20] 郝佳熊伟王彦辉于澎涛刘延惠徐丽宏王轶浩张晓蓓 . 华北落叶松人工林叶面积指数实测值与冠层分析仪读数值的比较和动态校正. 林业科学研究, 2012, 25(2): 231-235.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  4614
  • HTML全文浏览量:  3698
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 录用日期:  2021-04-23
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-02-20

偏冠对树冠垂直投影面积计算的影响

    通讯作者: 王轶夫, wyfbing@163.com
  • 北京林业大学森林资源和环境管理国家林业和草原局重点开放性实验室, 北京 100083

摘要:  目的 针对树冠结构复杂、形状不规则等问题,实现树冠垂直投影面积自动计算并提高树冠投影区域面积计算精度。 方法 以研究区453棵杉木为研究对象,精确测量每木8向冠幅。以Visualstudio和ArcGIS混合编程,进行树冠测量半径的坐标转换,采用Bezier曲线进行边界平滑,实现树冠垂直投影面积自动提取,并与传统计算方法进行对比分析。利用“圆度”来衡量树冠偏冠,并计算树冠偏冠指数与树冠垂直投影面积计算的相关性。 结果 本研究提出的树冠垂直投影面积计算方法能够计算出树冠真实面积,计算过程中测量冠幅半径数量越多,计算结果越接近真实冠幅面积,相比于椭圆的计算方法,把树冠视为正圆所得面积更接近真实面积。不同树冠垂直投影面积计算方法的结果和树冠垂直投影面积差值与树冠偏冠指数呈显著正相关。 结论 基于树冠投影区域形状的面积计算相较于传统的面积计算方法更加准确,为林业遥感冠幅提取精度验证提供了一种新思路。

English Abstract

  • 树冠信息是不可少的林分调查因子,反映了林木长期竞争水平[1-2]。无论是林业工作者还是研究人员越来越重视树冠信息的获取,随着航空航天遥感的发展,林业工作持续向精细化推进[3]。树冠冠幅是光学遥感测量的重点,准确测量地面树冠垂直投影面积对遥感冠幅提取的精度验证有较大帮助。

    在一个开放、没有竞争、养分充足的理想环境中,树木通常会生长出非常对称的冠形,树冠的垂直投影区域会一直趋近于圆形[4-6]。但是实际环境中,为了获取更大的生长优势,无论是天然林还是人工林总会存在对生存环境的竞争现象,对于光线的竞争直接影响了树冠冠形,而此时的林木通常会形成不规则不对称的冠形,树冠偏向更为优势的生长空间,通常这种情况叫做树冠的偏冠现象[7]。由于偏冠现象的存在,林木不同方向上活枝长度会有较大差异,导致树冠垂直投影区域通常不会呈正圆形,传统的树冠投影面积计算方法是测量树冠活枝边缘投影到地面的位置到树干的水平距离[8-9],计算树冠不同方向的平均冠幅,将树冠视作正圆和椭圆计算出树冠垂直投影面积,可能会与真实面积存在一定差异。地面测量不同方向冠幅后绘制的树冠垂直投影区域图像与现在光学遥感影像提取的树冠冠幅区域对比是当前判定树冠提取精度的重要手段。

    怎样通过获取的森林遥感影像有效的进行森林参数提取是当前研究的重点。单木分割,树种分类等研究都需要对整幅影像进行分割处理,只有在地面测量精度较高的情况下,以此来进行林业遥感的地面验证才具有实际意义,所以怎样获取真实冠幅面积的重要性大大增加,无人机遥感进行树冠冠幅提取的精度验证通常是对比单木东西冠幅,南北冠幅[10-12]或利用东西冠幅,南北冠幅进行树冠垂直投影面积[13-15]计算,对树冠采用近似圆的方法进行树冠面积计算时,由于实际林木生长情况的不同,林内竞争压力的不同,从而产生树冠偏冠现象,可能导致最终计算的树冠投影面积与真实值相差较大,因此,直接对树冠投影形状进行面积测量更为准确,本研究提出一种直接对树冠投影区域面积计算的方法,并研究了偏冠对于树冠投影面积计算的影响,证明基于树冠投影区域形状的面积计算能够更加准确的计算树冠投影区域面积,为林业遥感的进一步发展提供一定的参考。

    • 研究区为将乐国有林场(26°40′~26°50′ N,117° 25′~117°35′ E),位于福建省三明市将乐县,林场最高海拔1 203 m,最低海拔140 m,年均气温18.7℃,年均降水1 669 mm,年均蒸发量1 204 mm。杉木(Cunninghamia lanceolata (Lamb.) Hook.)、马尾松(Pinus massoniana Lamb.)是将乐国有林场主要针叶树种。

    • 选择生长状况良好的近熟和成熟杉木纯林样地(20 m×30 m)共5块,样地平缓无坡度,测量样地内共453株杉木不同方向冠幅数据。利用激光测距仪实测每木8向(东、东南、南、西南、西、西北、北、东北)最大冠长到树干的距离,测量时,保持测量位置与活冠边界的充分一致,枯枝不记作树冠边界(图1)。

      图  1  树冠半径测量示意图

      Figure 1.  Schematic diagram of crown radius measurement

      在Visualstudio中实现测量距离到点坐标的转换,便于在ArcGIS中构建树冠垂直投影多边形。树冠测量半径坐标转换实现示意如图2

      图  2  树冠半径转换为坐标示意图

      Figure 2.  Diagram of transforming crown radius into coordinates

      坐标转换公式:

      $ a = x + x' $

      (1)

      $ b = y + y' $

      (2)

      $ x' = 0'{\text{Acos45}}^\circ $

      (3)

      $ y' = 0'{\text{Acos45}}^\circ $

      (4)

      以样地西南角为坐标原点,$ x $为树干到样地西边界的距离,$ y $为树干到样地南边界的距离,$ 0'{\text{A}} $为树冠东北向冠幅长度。

      通过ArcGIS点转面生成的树冠冠幅,点与点的连接线为直线,由于实际生长状况下,树冠边界基本不存在直线形式,为了使生成结果更加接近真实情况,需要对边界直线进行平滑,本研究选择Bezier曲线进行树冠边界的平滑,Bezier曲线是一种在图形平滑处理中广泛应用的曲线模型,在常用的图形处理软件中可以根据需求控制曲线形状[16]。Bezier曲线通过调整图形边界上控制点的位置从而控制曲线弧度,将怎么绘制曲线的问题转换为控制点坐标的定位,首尾连接控制点构成光滑曲线,利用Bezier公式趋近于原始多边形[17]图3),从而得到所需的理想图形。随着控制点个数的增加,Bezier曲线的复杂程度和灵活程度逐渐增加,通常使用的是包含3个或4个控制点的Bezier曲线,N阶Bezier曲线的拟合公式[18]

      图  3  高阶Bezier曲线示意图

      Figure 3.  High order Bezier curve schematic

      $ P(t) = \sum\limits_{i = 0}^n {{P_i}{B_{i,n}}(t)} ,t \in [0.1] $

      (5)

      式中$ {P_i} $为Bezier曲线的$ n + 1 $个控制点,$ {B_{i,n}}(t) $为Bernstein基函数,有

      $ {B_{i,n}}(t) = C_n^i{t^i}{(1 - t)^{n - i}} (i=0,1,\cdots \text{,}n) $

      (6)
    • 在树冠偏冠的研究中通常采用数学“圆度”来衡量冠幅是否对称,冠幅投影形状越接近于圆则认为该树冠越对称[19]。以树干位置为中心,由测量的一组树冠冠幅长度构成的不规则图形被视为树冠投影区域,该图形与圆的偏离程度视作树冠偏冠指数CAI(Crown Asymmetry Index)[20]。在数学图像学领域,大量学者作了任意图形“圆度”测量的研究,本研究结合已有的树冠冠幅数据,参考孔繁琳[16]的研究,选择了其结合Herrera-Navarro[21]等人在2013年提出的数学图形平均圆度测量方法改编的树冠偏冠指数计算方法。CAI的计算方法如下:

      $ CAI = 1 - \frac{1}{N}\sum\limits_{i = 1}^N {\frac{{\overline R }}{{\left| {{R_i} - \overline R } \right| + \overline R }}} $

      (7)

      $ {R_i} $为第$ i $个树冠半径的长度,$ \overline R $$ N $个树冠半径的平均长度,$ N $为所测量树冠半径的总数。

    • Bezier曲线现在广泛运用于各类图形处理软件中,在ArcGIS中的Smooth polygon命令中选择Bezier算法实现树冠投影面积平滑,结果如图4

      图  4  树冠垂直投影面积计算结果(a. 冠幅直线连接, b. Bezier曲线平滑连接,c. 两种冠幅叠加比较)

      Figure 4.  Calculation results of vertical projection area of tree crown (a. Straight line connection of crown width, b. smooth connection of Bezier curve, c. superposition comparison of two kinds of crown width)

      图4可以看出,相较于直线连接的树冠边界,经过Bezier曲线平滑之后的树冠垂直投影面积更加真实树冠投影形状。所以选择Bezier曲线平滑后的图形面积作为真实树冠垂直投影面积。

    • 在ArcGIS中生成的树冠面图形,可以通过属性中的面积字段,直接计算当前面的面积。传统的树冠垂直投影面积计算,是将树冠投影图像作为圆或者椭圆,以平均冠幅作为圆的半径,以东西或南北冠幅作为长轴或短轴。本研究分别选择4向和8向冠幅的正圆和椭圆面积计算方法,结果见图5

      图  5  不同树冠垂直投影面积计算方法和树冠垂直投影面积差异

      Figure 5.  Different calculation methods of canopy vertical projection area and difference of canopy vertical projection area

      图5可以看出,8向冠幅正圆面积计算方法和椭圆面积计算方法和树冠垂直投影面积所得RMSE分别为0.423 0 m2和0.743 3 m2,4向冠幅正圆面积计算方法和椭圆面积计算方法和树冠垂直投影面积所得RMSE分别为1.368 5 m2和1.390 5 m2。可以看出,测量冠幅半径数量越多,计算结果越接近真实冠幅面积,同时,相比于椭圆的计算方法,把树冠视为正圆计算的结果更加接近真实树冠垂直投影面积。

    • 根据式5计算出每个树冠的CAI值,由CAI计算方法可以看出,树冠不同方向的冠幅长度直接影响了树冠偏冠指数的结果,将不同树冠垂直投影面积计算方法所得结果和树冠垂直投影面积差值与CAI进行相关性分析,结果见图6表1

      图  6  每木CAI计算结果

      Figure 6.  CAI results of each tree

      表 1  CAI和树冠垂直投影面积计算差值相关性

      Table 1.  Correlation between CAI and vertical projection area of tree crown

      8向椭圆面积差值
      8-directional
      crown ellipse
      area D-value
      8向正圆面积差值
      8-directional
      crown circle
      area D-value
      4向椭圆面积差值
      4-directional
      crown ellipse
      area D-value
      4向正圆面积差值
      4-directional
      crown circle
      area D-value
      0.315**0.522**0.180**0.172**
      0.0000.0000.0000.000

      表1可以看出,不同树冠垂直投影面积计算方法所得结果和树冠垂直投影面积差值与CAI呈显著正相关。在计算树冠垂直投影面积时,正是由于树冠偏冠的存在,才导致了不同面积计算方式与真实面积的差异。

    • 树冠垂直投影面积的精准测量对无人机调查精度意义重大[22]。本研究以研究区453棵杉木为研究对象,通过实地测量单木8向最大冠长到树干的距离,以此作为单木8向冠幅,以Visualstudio和ArcGIS混合编程,实现树冠测量半径的坐标转换,为了更加贴近真实树冠形状,采用Bezier曲线进行边界平滑,得到树冠垂直投影面积,分别与将树冠视作正圆和椭圆的计算方法进行对比分析。结果表明,本研究提出的树冠垂直投影面积计算方法能直接提取出树冠垂直投影面积;树冠垂直投影面积计算方法中,测量冠幅半径数量越多,计算结果越接近真实冠幅面积;相比于椭圆的计算方法,把树冠视为正圆所得面积更接近真实面积。

      树冠不对称性是近年来森林生态研究的热点,本研究参考前人研究,以“圆度”来衡量树冠偏冠,并计算了CAI与树冠垂直投影面积计算差值的相关性。结果表明,不同树冠垂直投影面积计算方法所得结果和树冠垂直投影面积差值与CAI呈显著正相关。因此认为,在计算树冠垂直投影面积时,由于树冠偏冠现象的存在,导致了传统的不同面积计算方式与树冠真实面积的差异。

      本研究中,虽然比较了4向和8向冠幅结果,但为了更进一步证实冠幅测量数量对树冠垂直投影面积计算的影响,应进一步测量16向或32向冠幅结果,以确定冠幅测量数量对面积计算的影响。本研究应用Bezier曲线进行树冠边界平滑,但以此代表实际结构更加复杂,形状不规则的树冠远远不够,如何更加真实还原真实树冠,更贴近森林真实样貌有待进一步研究。树冠不对称性是树冠形态的一个特征属性,树冠垂直投影面积的精准测量,将会极大的促进林业遥感和人工智能在林业领域的发展。

参考文献 (22)

目录

    /

    返回文章
    返回