[1] Arif I., Batool M, Schenk P M. Plant microbiome engineering: expected benefits for improved crop growth and resilience[J]. Trends in Biotechnology, 2020, 38(12): 1385-1396. doi: 10.1016/j.tibtech.2020.04.015
[2] Zhang H., Serwah Boateng N A, Ngolong Ngea G L., et al. Unravelling the fruit microbiome: The key for developing effective biological control strategies for postharvest diseases[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(5): 4906-4930. doi: 10.1111/1541-4337.12783
[3] Abdelfattah A., Wisniewski M, Droby S, et al. Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase[J]. Horticulture Research, 2016, 3(1): 1-12.
[4] Wassermann B., Müller H, Berg G. An apple a day: which bacteria do we eat with organic and conventional apples?[J]. Frontiers in Microbiology, 2019, 10: 1629. doi: 10.3389/fmicb.2019.01629
[5] Diskin S., Feygenberg O, Maurer D, et al. Microbiome alterations are correlated with occurrence of postharvest stem-end rot in mango fruit[J]. Phytobiomes, 2017, 1(3): 117-127. doi: 10.1094/PBIOMES-05-17-0022-R
[6] Cruz A.F, Barka G D, Sylla J, et al. Biocontrol of strawberry fruit infected by Botrytis cinerea: Effects on the microbial communities on fruit assessed by next-generation sequencing[J]. Journal of Phytopathology, 2018, 166(6): 403-411. doi: 10.1111/jph.12700
[7] Saminathan T., García M, Ghimire B, et al. Metagenomic and metatranscriptomic analyses of diverse watermelon cultivars reveal the role of fruit associated microbiome in carbohydrate metabolism and ripening of mature fruits[J]. Frontiers in Plant Science, 2018, 9: 4. doi: 10.3389/fpls.2018.00004
[8] Lukša J, Servienė E. White mulberry (Morus alba L. ) fruit-associated bacterial and fungal microbiota[J]. Journal of Environmental Engineering and Landscape Management, 2020, 28(4): 183-191. doi: 10.3846/jeelm.2020.13735
[9] Busby P E, Ridout M, Newcombe G. Fungal endophytes: modifiers of plant disease[J]. Plant Molecular Biology, 2016, 90(6): 645-655. doi: 10.1007/s11103-015-0412-0
[10] 张宇和, 柳 鎏, 梁维坚. 中国果树志板栗榛子卷 [M]. 北京: 中国林业出版社, 2005.
[11] Nicoletti R, Beccaro G L, Sekara A, et al. Endophytic fungi and ecological fitness of chestnuts[J]. Plants, 2021, 10(3): 542. doi: 10.3390/plants10030542
[12] 韩元顺, 许林云, 周 杰. 中国板栗产业与市场发展现状及趋势[J]. 中国果树, 2021(4):83-88.
[13] 赵相超. 核桃与板栗内生真菌分离、生防潜力菌株的筛选及其生物学特性 [D]. 泰安: 山东农业大学, 2013.
[14] 史明欣. 板栗内生真菌的分离及抑菌活性的初步研究 [D]. 杨凌: 西北农林科技大学, 2010.
[15] Müller D B, Vogel C, Bai Y, et al. The plant microbiota: systems-level insights and perspectives[J]. Annual Review of Genetics, 2016, 50: 211-234. doi: 10.1146/annurev-genet-120215-034952
[16] Padmalatha K, Prasad M N V. Optimization of DNA isolation and PCR protocol for RAPD analysis of selected medicinal and aromatic plants of conservation concern from Peninsular India[J]. African Journal of Biotechnology, 2006, 5(3): 230-234.
[17] Lanzén A, Epelde L, Blanco F, et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient[J]. Scientific Reports, 2016, 6(1): 1-13. doi: 10.1038/s41598-016-0001-8
[18] Jasalavich C A, Ostrofsky A, Jellison J. Detection and identification of decay fungi in spruce wood by restriction fragment length polymorphism analysis of amplified genes encoding rRNA[J]. Applied and Environmental Microbiology, 2000, 66(11): 4725-4734. doi: 10.1128/AEM.66.11.4725-4734.2000
[19] White T J, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[J]. PCR Protocols:A Guide to Methods and Applications, 1990, 18(1): 315-322.
[20] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. doi: 10.1038/nmeth.f.303
[21] Abarenkov K, Henrik Nilsson R, Larsson K H, et al. The UNITE database for molecular identification of fungi–recent updates and future perspectives[J]. New Phytologist, 2010, 186(2): 281-285. doi: 10.1111/j.1469-8137.2009.03160.x
[22] Wang H, Guo S, Huang M, et al. Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota[J]. Science China Life Sciences, 2010, 53(10): 1163-1169. doi: 10.1007/s11427-010-4063-8
[23] Rybakova D, Mancinelli R, Wikström M, et al. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens[J]. Microbiome, 2017, 5(1): 1-16. doi: 10.1186/s40168-016-0209-7
[24] Preto G, Martins F, Pereira J A, et al. Fungal community in olive fruits of cultivars with different susceptibilities to anthracnose and selection of isolates to be used as biocontrol agents[J]. Biological Control, 2017, 110: 1-9. doi: 10.1016/j.biocontrol.2017.03.011
[25] Ren F, Dong W, Yan D H. Organs, cultivars, soil, and fruit properties affect structure of endophytic mycobiota of pinggu peach trees[J]. Microorganisms, 2019, 7(9): 322. doi: 10.3390/microorganisms7090322
[26] Zheng Y K, Qiao X G , Miao C P , et al. Diversity, distribution and biotechnological potential of endophytic fungi[J]. Annals of Microbiology, 2016, 66(2): 529-542. doi: 10.1007/s13213-015-1153-7
[27] Abdelfattah A, Whitehead S R, Macarisin D, et al. Effect of washing, waxing and low-temperature storage on the postharvest microbiome of apple[J]. Microorganisms, 2020, 8(6): 944. doi: 10.3390/microorganisms8060944
[28] Manso T, Nunes C. Metschnikowia andauensis: a novel biocontrol agent of fruit postharvest diseases[J]. Acta Horticulturae, 2011(905): 261-268.
[29] Jan F G , Hamayun M , Hussain A, et al. A promising growth promoting Meyerozyma caribbica from Solanum xanthocarpum alleviated stress in maize plants [J]. Bioscience Reports, 2019, 39(10).
[30] Tian Y Q, Li W, Jiang Z T, et al. The preservation effect of Metschnikowia pulcherrima yeast on anthracnose of postharvest mango fruits and the possible mechanism[J]. Food Science and Biotechnology, 2018, 27(1): 95-105. doi: 10.1007/s10068-017-0213-0
[31] Czarnecka M, Żarowska B, Połomska X, et al. Role of biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in plants' defence mechanisms against Monilinia fructicola in apple fruits[J]. Food Microbiology, 2019, 83: 1-8. doi: 10.1016/j.fm.2019.04.004
[32] Amprayn K O, Rose M T, Kecskés M, et al. Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth[J]. Applied Soil Ecology, 2012, 61: 295-299. doi: 10.1016/j.apsoil.2011.11.009
[33] Fernandez-San Millan A,. Farran I, Larraya L, et al. Plant growth-promoting traits of yeasts isolated from Spanish vineyards: Benefits for seedling development[J]. Microbiological Research, 2020, 237: 126480. doi: 10.1016/j.micres.2020.126480
[34] Efremenkova O V, Vasiljeva B F, Zenkova V A, et al. Antimicrobial properties of eremoxylarin A produced by ascomycete of Sordariomycetes in submerged culture[J]. Antibiotikii Khimioterapiia, 2015, 60(11-12): 23-28.
[35] Jinfeng E C, Rafi M I M, Hoon K C, et al. Analysis of chemical constituents, antimicrobial and anticancer activities of dichloromethane extracts of Sordariomycetes sp. endophytic fungi isolated from Strobilanthes crispus[J]. World Journal of Microbiology and Biotechnology, 2017, 33(1): 1-19. doi: 10.1007/s11274-016-2144-y
[36] 梅汝鸿, 陈宝琨, 陈 璧, 等. 板栗干腐病研究: Ⅱ. 症状及病原[J]. 中国微生态学杂志, 1991(1):75-79.
[37] 侯保林, 张志铭, 杨兴民, 等. 河北板栗种仁斑点类病害研究[J]. 河北农业大学学报, 1988(2):11-22.
[38] 贺 伟, 沈瑞祥, 王晓军. 北京地区板栗实腐病病原菌的致病性及侵染过程[J]. 北京林业大学学报, 2001(2):36-39. doi: 10.3321/j.issn:1000-1522.2001.02.009