[1] 国家林业局森林资源管理司, 全国森林资源统计-第七次全国森林资源清查[R]. 北京: 国家林业局, 2010, 37(2): 1-7.
[2] Castro-Rodríguez V, García-Gutiérrez A, Canales J, et al. Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy[J]. Plant Biotechnology, 2016, 14(1): 299-312. doi: 10.1111/pbi.12384
[3] Rennenberg H, Wildhagen H, Ehlting B. Nitrogen nutrition of poplar trees[J]. Plant Biol (Stuttg), 2010, 12(2): 275-291. doi: 10.1111/j.1438-8677.2009.00309.x
[4] Lu Y, Deng S, Li Z, et al. Competing endogenous RNA networks underlying anatomical and physiological characteristics of poplar wood in acclimation to low nitrogen availability[J]. Plant Cell Physiology, 2019, 60(11): 2478-2495. doi: 10.1093/pcp/pcz146
[5] Wei H, Yordanov Y S, Georgieva T, et al. Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks[J]. New Phytology, 2013, 200(2): 483-497. doi: 10.1111/nph.12375
[6] O'Brien J A, Vega A, Bouguyon E, et al. Nitrate transport, sensing, and responses in plants[J]. Molecular Plant, 2016, 9(6): 837-856. doi: 10.1016/j.molp.2016.05.004
[7] Zhou J, Fan Y, Chen H. Analyses of long non-coding RNA and mRNA profiles in the spinal cord of rats using RNA sequencing during the progression of neuropathic pain in an SNI model[J]. RNA Biology, 2017, 14(12): 1810-1826. doi: 10.1080/15476286.2017.1371400
[8] Liu C, Li C, Deng Z, et al. Long non-coding RNA BC168687 is involved in TRPV1-mediated diabetic neuropathic pain in rats[J]. Neuroscience, 2018, 374: 214-222. doi: 10.1016/j.neuroscience.2018.01.049
[9] Peng H, Zou L, Xie J, et al. lncRNA NONRATT021972 siRNA decreases diabetic neuropathic pain mediated by the P2X3 receptor in dorsal root ganglia[J]. Molecular Neurobiol, 2017, 54(1): 511-523. doi: 10.1007/s12035-015-9632-1
[10] Campa C, Diouf D, Ndoye I, et al. Differences in nitrogen metabolism of Faidherbia albida and other N-2-fixing tropical woody acacias reflect habitat water availability[J]. New Phytologist, 2000, 147: 571-578. doi: 10.1046/j.1469-8137.2000.00714.x
[11] Barzegari M, Sepaskhah A R, Ahmadi S H. Irrigation and nitrogen managements affect nitrogen leaching and root yield of sugar beet[J]. Nutrient Cycling in Agroecosystems, 2017, 108(2): 211-230. doi: 10.1007/s10705-017-9853-y
[12] Gunn K M, Baule W J, Frankenberger J R, et al. Modeled climate change impacts on subirrigated maize relative yield in northwest Ohio[J]. Agricultural Water Management, 2018, 206: 56-66. doi: 10.1016/j.agwat.2018.04.034
[13] Gaudin A C, McClymont S A, Holmes B M, et al. Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress[J]. Plant Cell Environment, 2011, 34(12): 2122-2137. doi: 10.1111/j.1365-3040.2011.02409.x
[14] Zhang H, Rong H, Pilbeam D. Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana[J]. J Exp Bot, 2007, 58(9): 2329-2338. doi: 10.1093/jxb/erm114
[15] Li H, Hu B, Wang W, et al. Identification of microRNAs in rice root in response to nitrate and ammonium[J]. J Genet Genomics, 2016, 43(11): 651-661. doi: 10.1016/j.jgg.2015.12.002
[16] Zhou J, Lu Y, Shi W, et al. Physiological characteristics and RNA sequencing in two root zones with contrasting nitrate assimilation of Populus × canescens[J]. Tree Physiology, 2020, 40(10): 1392-1404. doi: 10.1093/treephys/tpaa071
[17] Tang G, Reinhart B J, Bartel D P, et al. A biochemical framework for RNA silencing in plants[J]. Genes & Development, 2003, 17(1): 49-63.
[18] Ren Y, Sun F, Hou J, et al. Differential profiling analysis of miRNAs reveals a regulatory role in low N stress response of Populus[J]. Funct Integr Genomics, 2015, 15(1): 93-105. doi: 10.1007/s10142-014-0408-x
[19] Lu S, Sun Y, Shi R, et al. Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. The Plant Cell Online, 2005, 17(8): 2186-2203. doi: 10.1105/tpc.105.033456
[20] Gifford M L, Dean A, Gutierrez R A, et al. Cell-specific nitrogen responses mediate developmental plasticity[J]. Proceedings of the National Academy of Sciences, 2008, 105(2): 803-808. doi: 10.1073/pnas.0709559105
[21] Vidal E A, Araus V, Lu C, et al. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2010, 107(9): 4477-4482. doi: 10.1073/pnas.0909571107
[22] Gutierrez R A. Systems biology for enhanced plant nitrogen nutrition[J]. Science, 2012, 336(6089): 1673-1675. doi: 10.1126/science.1217620
[23] Li S, Tian Y, Wu K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560(7720): 595-600. doi: 10.1038/s41586-018-0415-5
[24] Guo Q, Love J, Roche J, et al. A RootNav analysis of morphological changes in Brassica napus L. roots in response to different nitrogen forms[J]. Plant Growth Regulation, 2017, 83(1): 83-92. doi: 10.1007/s10725-017-0285-0
[25] Hu B, Wang W, Deng K, et al. MicroRNA399 is involved in multiple nutrient starvation responses in rice[J]. Front Plant Sci, 2015, 6: 188.
[26] 许传俊, 李 玲. 泛素_26S蛋白酶体途径与植物的生长发育[J]. 西北植物学报, 2007, 27(3):635-643.
[27] 朱美娇, 张海玲, 徐香玲, 等. 泛素_26S蛋白酶体途径调节非生物胁迫的研究进展[J]. 北方园艺, 2015(3):188-192.
[28] Harberd N P, Belfield E, Yasumura Y. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments[J]. Plant Cell, 2009, 21(5): 1328-1339. doi: 10.1105/tpc.109.066969
[29] Tamura W, Hidaka Y, Tabuchi M, et al. Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants[J]. Amino Acids, 2010, 39(4): 1003-1012. doi: 10.1007/s00726-010-0531-5
[30] Maghiaoui A, Gojon A, Bach L. NRT1.1-centered nitrate signaling in plants[J]. J Exp Bot, 2020, 71(20): 6226-6237. doi: 10.1093/jxb/eraa361
[31] Zhao M, Ding H, Zhu J, et al. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis[J]. New Phytol, 2011, 190(4): 906-915. doi: 10.1111/j.1469-8137.2011.03647.x
[32] He X, Qu B, Li W, et al. The nitrate-Inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield[J]. Plant Physiology, 2015, 169(3): 1991-2005.