[1] Duduk B, Tian J, Contaldo N, et al. Occurrence of phytoplasmas related to stolbur and to ‘Candidatus Phytoplasmajaponicum’ in woody host plants in China[J]. J Phytopathol, 2010, 158: 100-104. doi: 10.1111/j.1439-0434.2009.01586.x
[2] Yu Z C, Cao Y, Zhang Q, et al. ‘Candidatus Phytoplasmaziziphi’ associated with Sophora japonica withes’broom disease in China[J]. J Gen Plant Pathol, 2012, 78: 298-300. doi: 10.1007/s10327-012-0385-7
[3] 杜银银. 国槐和紫薇带化病植原体的分子鉴定[D]. 杨凌: 西北农林科技大学, 2014.
[4] 李继东, 陈 鹏, 倪 静, 等. 植原体致病分子机理研究进展[J]. 园艺学报, 2019, 46(9):1691-1700.
[5] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nature Reviews. Genetics, 2009, 10(1): 57. doi: 10.1038/nrg2484
[6] Fan G. G, Cao X. B, Zhao Z. L, et al. Transcriptome analysis of the genes related to the morphological changes of Paulownia tomentosa plantlets infected with phytoplasma[J]. Acta Physiologiae Plantarum, 2015, 37(10): 1-12.
[7] Mardi M, Farsad L. K, Gharechahi J, et al. Indepthtranscriptome sequencing of mexican lime trees infected with candidatus Phytoplasma aurantifolia[J]. PloS One, 10(7):e, 0130: 425.
[8] 万倩芸, 陈丽娜, 邓 娟, 等. 植物扁茎形成机制研究进展[J]. 分子植物育种, 2017, 15(9):3717-3722.
[9] 万倩芸. 基于转录组学的茅苍术扁茎变异机制研究[D]. 武汉: 湖北中医药大学, 2019.
[10] 张舒怡, 张 钟, 张春梅, 等. 基于转录组水平的枣疯病发病机理研究[J]. 园艺学报, 2017, 44(7):1287-1298.
[11] 杜绍华, 卜志国, 刘 洋. 植原体浸染对枣树内源激素含量的影响[J]. 北方园艺, 2013(13):12-15.
[12] Grabherr M G, Haas B J, Yassour M, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seqdata[J]. Nature Biotechnology, 2011, 29(7): 644-652. doi: 10.1038/nbt.1883
[13] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
[14] Altschul S F, Madden T L, Zhang J, et al. Gapped BLAST and PSI BLAST: A New Generation of Protein Database Search Programs[J]. Nucleic Acids Research, 1997, 25(17): 3389-3402. doi: 10.1093/nar/25.17.3389
[15] Apweiler R, Bairoch A, Wu C H, et al. UniProt: the universal protein knowledgebase[J]. Nucleic Acids Research, 2004, 32: 115-119. doi: 10.1093/nar/gkh151
[16] Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 2011, 39(WebServerissue): 316-322.
[17] Finn R D, Coggill P, Eberhardt R Y, et al. Nucleic Acids Research[J]. Database Issue, 2016, 44: 279-285.
[18] Tatusov R L, Galperin M Y, Natale D A. The COG database: a tool for genome scale analysis of protein functions and evolution[J]. Nucleic Acids Research., 2000, 28(1): 33-36. doi: 10.1093/nar/28.1.33
[19] Kanehisa M, Goto S, Kawashima S, Okuno Y, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32: 277-280. doi: 10.1093/nar/gkh063
[20] Leng N, Dawson J A, Thomson J A, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seqexperiments[J]. Bioinformatics., 2013, 29(8): 1035-1043. doi: 10.1093/bioinformatics/btt087
[21] Bertamini M, Grando M S, Muthuchelian K, et al. Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Maluspumila) leaves[J]. Physiological & Molecular Plant Pathology, 2002, 61(6): 349-356.
[22] MirnaĆ P, Hrvoje L, Martina Š M. Effect of indole-3-butyric acid on phytoplasmas in infected Catharanthusroseus shoots grown in vitro[J]. FEMS Microbiology Letters, 2007, 268: 171-177. doi: 10.1111/j.1574-6968.2006.00577.x
[23] 赵 锦, 刘孟军, 代 丽, 等. 枣疯病病树中内源激素的变化研究[J]. 中国农业科学, 2006, 39(11):2255-2255. doi: 10.3321/j.issn:0578-1752.2006.11.014
[24] Kesumawati E, Kimata T, Uemachi T, et al. Correlation of phytoplasma concentration in Hydrangea macrophylla with green-flowering stability[J]. Entia Horticulturae, 2006, 108(1): 74-78.
[25] 何放亭, 戴 群. C/A值与甘薯丛枝病症状发生的关系[J]. 植物病理学报, 1997, 27(1):43-46. doi: 10.3321/j.issn:0412-0914.1997.01.012
[26] 田国忠, 黄钦才, 袁巧平, 等. 感染MLO泡桐组培苗代谢变化与致病机理的关系[J]. 中国科学(B辑化学生命科学地学), 1994(5):484-490.
[27] 李合生. 现代植物生理学: Modern Plant Physiology[M]. 北京: 高等教育出版社, 2012.
[28] Sugio A, Maclean A M, Kingdom H N, et al. Diverse Targets of Phytoplasma Effectors: From Plant Development to Defense Against Insects[J]. Annual Review of Phytopathology, 2011, 49(1): 175. doi: 10.1146/annurev-phyto-072910-095323
[29] 鲍璐璐, 崔立红. TLR4/MyD88/NF-κB信号通路的研究进展[J]. 胃肠病学和肝病学杂志, 2019, 28(5):568-572. doi: 10.3969/j.issn.1006-5709.2019.05.019
[30] 何金鑫, 黄丽华. LPS-TLR4/NF-kB信号通路与抗炎免疫研究进展[J]. 中外健康文摘, 2013(37).
[31] Minato N, Himeno M, Hoshi A, et al. The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxinpathways[J]. Scientific Reports, 2014, 4: 7399.
[32] To J P C, Kieber J J. Cytokinin signaling: two-components and more[J]. Trends Plant, 2008, 13(2): 85-92. doi: 10.1016/j.tplants.2007.11.005
[33] Michael R, Ondrej N, Miroslav S, et al. Arabidopsis Cytokinin Receptor Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed Size, Germination, Root Development, and Cytokinin Metabolism[J]. The Plant Cell, 2006, 18(1): 40-54.
[34] 韩良泽, 陈明利, 陈永华, 等. 泡桐根系应答铅锌矿胁迫的转录组分析[J]. 中南林业科技大学学报, 2020, 40(8):128-138.