[1] Graham S A. The felled tree trunk as an ecological unit[J]. Ecology, 1925, 6(4): 397-411. doi: 10.2307/1929106
[2] 何东进, 何小娟, 洪 伟, 等. 森林生态系统粗死木质残体的研究进展[J]. 林业科学研究, 2009, 22(5):715-721. doi: 10.3321/j.issn:1001-1498.2009.05.017
[3] Krik A A. Decomposition of Wood-ScienceDirect[J]. Biology of Plant Litter Decomposition, 1974, 31(6): 129-174.
[4] Spies T A, Franklin J P, Thomas T B. Coarse woody debris in Douglas-fir forests of westem Oregon and Washington[J]. Ecology, 1988, 69: 1689-1702. doi: 10.2307/1941147
[5] Whiles M R, Grubaugh J W. Importance of coarse woody debris to southern forest herpetofauna[J]. For Serv Gen Tech Rep SE-94, 1996: 94-100.
[6] Phillip S. Input and decay of coarse woody debris in coniferous stands in western Oregon and Washington[J]. Canadian Journal of Forest Research, 1982, 12(1): 18-28. doi: 10.1139/x82-003
[7] Harmon M E, Franklin J F, Swanson F J, et al. Ecology of coarse woody debris in temperate ecosystems[J]. Advances in Ecological Research, 1986, 15: 133-302.
[8] 慈 航, 李兆佳, 周光益, 等. 温度和元素含量对流溪河2个树种粗木质残体呼吸季节动态的影响[J]. 林业科学研究, 2018, 31(5):74-81.
[9] 樊小丽, 周光益, 赵厚本, 等. 岭南藜蒴栲-罗浮柿群系粗木质残体的基本特征[J]. 林业科学研究, 2016, 29(3):448-454. doi: 10.3969/j.issn.1001-1498.2016.03.022
[10] 胡海清, 罗碧珍, 魏书精. 森林粗木质物残体贮量及功能研究综述[J]. 世界林业研究, 2013, 26(2):24-29.
[11] Hely C, Bergeron Y, Flannigan M D. Coarse woody debris in the Southeaster Canadian boreal forest: Composition and load variation in relation to stand replacement[J]. Canadian Journal of Forest Research, 2000, 30(5): 674-686. doi: 10.1139/x99-256
[12] Jonsson B G, Hofgaard A. The structure and regeneration of high-altiutude Norway spruce forests: a review of Arnborg[J]. Scandinavian Journal of Forest Research, 2011, 26: 17-24. doi: 10.1080/02827581.2011.517948
[13] Brin A, Meredieu C, Piou D, et al. Changes in quantitative patterns of dead wood in maritime pine plantations over time[J]. Forest Ecology and Management, 2008, 256: 913-921. doi: 10.1016/j.foreco.2008.05.042
[14] Mori A, Mizumachi E, Osono T, et al. Substrate-associated seeding recruitment and establishment of major conifer species in an old-growth subalpine forest in central Japan[J]. Forest Ecology and Management, 2004, 196(2-3): 287-297. doi: 10.1016/j.foreco.2004.03.027
[15] 贺 敏, 魏江生, 石 亮, 等. 大兴安岭南段山杨径向生长和死亡对区域气候变化的响应[J]. 生态学杂志, 2018, 37(11):3237-3244.
[16] Xu C, Liu H, Zhou M, et al. Enhanced sprout-regeneration offsets warming-induced forest mortality through shortening the generation time in semiarid birch forest[J]. Forest Ecology and Management, 2018, 409: 298-306. doi: 10.1016/j.foreco.2017.11.035
[17] Zeng N, Yao H, Zhou M, et al. Species-specific determinants of mortality and recruitment in the forest-steppe ecotone of northeast China[J]. The Forestry Chronicle, 2016, 92(3): 336-344. doi: 10.5558/tfc2016-060
[18] 赵鹏武, 管立娟, 刘兵兵, 等. 我国半干旱区东段森林动态研究现状及展望[J]. 世界林业研究, 2021, 34(2):74-79.
[19] 张书理. 内蒙古赛罕乌拉自然保护区植物多样性及其保护研究[D]. 北京: 北京林业大学, 2007.
[20] 刘鸿雁, 印 轶. 森林分布响应过去气候变化对未来预测的启示[J]. 科学通报, 2013, 58(34):3501-3512.
[21] 吴秀臣, 裴婷婷, 李小雁, 等. 树木生长对气候变化的响应研究进展[J]. 北京师范大学学报:自然科学版, 2016, 52(1):109-116.
[22] 黄永梅, 刘鸿雁, 崔海亭. 内蒙古高原东南缘森林草原过渡带景观的若干特征[J]. 植物生态学报, 2001(3):257-264. doi: 10.3321/j.issn:1005-264X.2001.03.001
[23] 郝 倩, 印 轶, 刘鸿雁. 林草交错带森林如何响应中晚全新世的气候干旱化: 内蒙古南部黄旗海剖面的实例研究[C]//. 中国古生物学会孢粉学分会. 中国古生物学会孢粉学分会第九届一次学术年会论文摘要集. 中国古生物学会孢粉学分会: 中国古生物学会孢粉学分会, 2013: 1.
[24] 曾 楠, 周 梅, 赵鹏武, 等. 大兴安岭南段阔叶次生林空间格局及种间关系[J]. 东北林业大学学报, 2014, 42(7):37-41.
[25] 冯倩倩, 周 梅, 赵鹏武, 等. 大兴安岭南段不同林龄白桦种子雨与地表种子库研究[J]. 林业资源管理, 2019(4):74-79.
[26] 刘鸿雁, 李宜垠. 半干旱区气候变化和人类活动的孢粉指示[J]. 古生物学报, 2009, 48(2):211-221. doi: 10.3969/j.issn.0001-6616.2009.02.010
[27] 陈镜园. 典型阔叶红松林粗木质残体对幼苗更新的影响[D]. 哈尔滨: 东北林业大学, 2016.
[28] Karimi S, Bagher Z, Najmoddin N, et al. Alginate-magnetic short nanofibers 3D composite hydrogel enhances the encapsulated human olfactory mucosa stem cells bioactivity for potential nerve regeneration application[J]. International Journal of Biological Macromolecules, 2021(167): 796-806.