[1] Wright S J, Turner B J, Yavitt J B, et al. Plant responses to fertilization experiment in lowland species-rich tropical forests[J]. Ecology, 2018, 99(5): 1129-1138. doi: 10.1002/ecy.2193
[2] Peñuelas J, Jannssens I, Ciais P, et al. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity ecosystem productivity food security and human health[J]. Global Change Biology, 2020, 26(4): 1962-1985. doi: 10.1111/gcb.14981
[3] 刘彩霞, 焦如珍, 董玉红, 等. 杉木林土壤微生物区系对短期模拟氮沉降的响应[J]. 林业科学研究, 2015, 28(2):271-276.
[4] Zak D R, Freedman ZB, Upchurch RA, et al. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition[J]. Global Change Biology, 2016, 23(2): 933-944.
[5] Hu B, Yang B, Pang X, et al. Responses of soil phosphorus fractions to gap size in a reforested spruce forest[J]. Geoderma, 2016, 279: 61-69. doi: 10.1016/j.geoderma.2016.05.023
[6] Chen S, Yan Z, Zhang S, et al. Nitrogen application favors soil organic phosphorus accumulation in calcareous vegetable fields[J]. Biology and Fertility of Soils, 2019, 55(5): 481-496. doi: 10.1007/s00374-019-01364-9
[7] Fan Y, Lin F, Yang L, et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biology and fertility of Soils, 2018, 54(1): 149-161. doi: 10.1007/s00374-017-1251-8
[8] Tiessen H , Moir J O . Characterization of Available P by Sequential Extraction[M]. Carter M R, ed. Soil Sampling and Methods of Analysis. Canadian: Lewis Press, 1993: 75-86.
[9] 张 虹, 于姣妲, 李海洋, 等. 不同栽植代数杉木人工林土壤磷素特征研究[J]. 林业科学研究, 2021, 34(1):10-18.
[10] Spohn M, Widdig M. Turnover of carbon and phosphorus in the microbial biomass depending on phosphorus availability[J]. Soil Biology Biochemistry, 2017, 113: 53-59. doi: 10.1016/j.soilbio.2017.05.017
[11] Liu Y, Zhang G, Luo X, et al. Mycorrhizal fungi and phosphatase involvement in rhizosphere phosphorus transformations improves plant nutrition during subtropical forest succession[J]. Soil Biology and Biochemistry, 2021, 153: 108099. doi: 10.1016/j.soilbio.2020.108099
[12] Turlapati S A, Minocha R, Bhiravarasa P S, et al. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA[J]. FEMS Microbiology Ecology, 2013, 83(2): 478-493. doi: 10.1111/1574-6941.12009
[13] Petr B. Forest microbiome: diversity, complexity and dynamics[J]. Fems Microbiology Reviews, 2017, 41(2): 109-130.
[14] 刘金福, 朱德煌, 兰思仁, 等. 戴云山黄山松群落与环境的关联[J]. 生态学报, 2013, 33(18):5731-5736.
[15] 曾泉鑫, 张秋芳, 林开淼, 等. 酶化学计量揭示5年氮添加加剧毛竹林土壤微生物碳磷限制[J]. 应用生态学报, 2021, 32(2):521-528.
[16] 曾晓敏, 范跃新, 林开淼, 等. 亚热带不同植被类型土壤磷组分特征及其影响因素[J]. 应用生态学报, 2018, 29(7):2156-2162.
[17] Zhu J, He N, Wang Q, et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems[J]. Science of The Total Environment, 2015, 511: 777-785. doi: 10.1016/j.scitotenv.2014.12.038
[18] Carter M R. Soil Sampling and Methods of Analysis[M]. Florida: The Chemical Rubber Company Press, 1993.
[19] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil biology and Biochemistry, 1987, 19(6): 703-707. doi: 10.1016/0038-0717(87)90052-6
[20] Tian J, Wei K, Condron L M, et al. Impact of land use and nutrient addition on phosphatase activities and their relationships with organic phosphorus turnover in semi-arid grassland soils[J]. Biology and Fertility of Soils, 2016, 52(5): 675-683. doi: 10.1007/s00374-016-1110-z
[21] 牛利敏, 苗倞婧, 彭定聪, 等. 长期粗放经营毛竹林土壤微生物群落演变特征[J]. 林业科学研究, 2017, 30(2):285-292.
[22] Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratOry incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi: 10.2136/sssaj1982.03615995004600050017x
[23] Huang W, Zhou G, Liu J, et al. Shifts in soil phosphorus fractions under elevated CO2 and N ddition inmodel forest ecosystems in subtropical China[J]. Plant Ecology, 2014, 215(11): 1373-1384. doi: 10.1007/s11258-014-0394-z
[24] Weihrauch C, Opp C. Ecologically relevant phosphorus pools in soils and their dynamics: The story so far[J]. Geoderma, 2018, 325: 183-194. doi: 10.1016/j.geoderma.2018.02.047
[25] 曾泉鑫, 曾晓敏, 林开淼. 亚热带毛竹林土壤磷组分和微生物对氮添加的响应[J]. 应用生态学报, 2020, 31(3):753-760.
[26] Hou E, Chen C, Kuang Y, et al. A structural equation model analysis of phosphorus transformations in global unfertilized and uncultivated soils[J]. Global Biogeochemical Cycles, 2016, 30(9): 1300-1309. doi: 10.1002/2016GB005371
[27] Barrow N J. A mechanistic model for describing the sorption and desorption of phosphate by soil[J]. European Journal of Soil Science, 2015, 66(1): 9-18. doi: 10.1111/ejss.12198_2
[28] Uroz S, Calvaruso C, Turpault M P, et al. Mineral weathering by bacteria: ecology, actors and mechanisms[J]. Trends in Microbiology, 2009, 17(8): 378-387. doi: 10.1016/j.tim.2009.05.004
[29] Velasquez G, Ngo P T, Rumpel C, et al. Chemical nature of residual phosphorus in Andisols[J]. Geoderma, 2016, 271: 27-31. doi: 10.1016/j.geoderma.2016.01.027
[30] 杨 豆, 石福习, 万松泽, 等. 金黄蓝状菌对毛竹土壤磷组分及苗木生物量的影响[J]. 林业科学研究, 2021, 34(3):145-151.
[31] Achat D L, Augusto L, Bakker M R, et al. Microbial processes controlling P availability in forest spodosols as affected by soil depth and soil properties[J]. Soil Biology and Biochemistry, 2012, 44(1): 39-48. doi: 10.1016/j.soilbio.2011.09.007
[32] 彭建勤, 林成芳, 洪慧滨, 等. 中亚热带森林更新方式对土壤磷素的影响[J]. 生态学报, 2016, 36(24):8015-8024.
[33] Sinha M K. Organo-metallic phosphates[J]. Plant & Soil, 1971, 35(1): 471-484.
[34] Mulvaney R L, Khan S A, Ellsworth T R. Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production[J]. Journal of environmental quality, 2009, 38(6): 2295-2314. doi: 10.2134/jeq2008.0527
[35] Tan X, Nie Y, Ma X, et al. Soil chemical property rather than the abundance of active and potentially active microorganisms control soil enzyme kinetics[J]. Science of The Total Environment, 2021, 770: 144500. doi: 10.1016/j.scitotenv.2020.144500
[36] Tabatabai M A, Bremner J M. Michaelis constants of soil enzymes[J]. Soil Biology and Biochemistry, 1971, 3(4): 317-323. doi: 10.1016/0038-0717(71)90041-1
[37] Becquer A, Trap J, Irshad U, et al. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association[J]. Front Plant Science, 2014, 5: 548.