[1] Chuvieco E, Aguado I, Yebra M, et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies[J]. Ecological Modelling, 2010, 221(1): 46-58. doi: 10.1016/j.ecolmodel.2008.11.017
[2] 史培军. 五论灾害系统研究的理论与实践[J]. 自然灾害学报, 2009, 18(5):1-9. doi: 10.3969/j.issn.1004-4574.2009.05.001
[3] 田晓瑞, 代 玄, 王明玉, 等. 多气候情景下中国森林火灾风险评估[J]. 应用生态学报, 2016, 27(3):769-776.
[4] Woo H, Chung W, Graham J M, et al. Forest fire risk assessment using point process modelling of fire occurrence and Monte Carlo fire simulation[J]. International Journal of Wildland Fire, 2017, 26(9): 789-805. doi: 10.1071/WF17021
[5] Molaudzi O D, Adelabu S A. Review of the use of remote sensing for monitoring wildfire risk conditions to support fire risk assessment in protected areas[J]. South African Journal of Geomatics, 2019, 7(3): 222-242. doi: 10.4314/sajg.v7i3.2
[6] You W, Lin L, Wu L, et al. Geographical information system-based forest fire risk assessment integrating national forest inventory data and analysis of its spatiotemporal variability[J]. Ecological Indicators, 2017, 77: 176-184. doi: 10.1016/j.ecolind.2017.01.042
[7] Coban H O, Erdin C. Forest fire risk assessment using GIS and AHP integration in Bucak forest enterprise, Turkey[J]. Applied Ecology and Environmental Research, 2020, 18(1): 1567-1583. doi: 10.15666/aeer/1801_15671583
[8] Johnston L M, Wang X, Erni S, et al. Wildland fire risk research in Canada[J]. Environmental Reviews, 2020, 28(2): 1-23.
[9] Fargeon H, Pimont F, Martin-StPaul N, et al. Projections of fire danger under climate change over France: where do the greatest uncertainties lie?[J]. Climatic Change, 2020, 160: 1-15. doi: 10.1007/s10584-020-02705-6
[10] Çolak E, Sunar F. Evaluation of forest fire risk in the Mediterranean Turkish forests: A case study of Menderes region, Izmir[J]. International Journal of Disaster Risk Reduction, 2020, 45: 101479. doi: 10.1016/j.ijdrr.2020.101479
[11] Lehtonen I, Ruosteenoja K, Venäläinen A, et al. The projected 21st century forest-fire risk in Finland under different greenhouse gas scenarios[J]. Boreal Environment Research, 2014, 19: 127-139.
[12] Jadmiko S D, Murdiyarso D, Faqih A. Climate changes projection for land and forest fire risk assessment in West Kalimantan[J]. IOP Conference Series: Earth and Environmental Science, 2017: 012030.
[13] Busico G, Giuditta E, Kazakis N, et al. A Hybrid GIS and AHP approach for modelling actual and future forest fire risk under climate change accounting water resources attenuation role[J]. Sustainability, 2019, 11(24): 7166. doi: 10.3390/su11247166
[14] Goldammer J G, Davidenko E P, Kondrashov L G, et al. Recent trends of forest fires in Central Asia and opportunities for regional cooperation in forest fire management[C]//Regional Forest Congress Forest Policy: Problems and Solutions. 2004: 25-27.
[15] Arkhipov V, Moukanov B M, Khaidarov K, et al. Overview on forest fires in Kazakhstan[J]. International Forest Fire News, 2000, 22: 40-48.
[16] Dulamsuren C, Wommelsdorf T, Zhao F, et al. Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of eastern Kazakhstan[J]. Ecosystems, 2013, 16(8): 1536-1549. doi: 10.1007/s10021-013-9700-1
[17] Anceschi L. Integrating domestic politics and foreign policy making: the cases of Turkmenistan and Uzbekistan[J]. Central Asian Survey, 2010, 29(2): 143-158. doi: 10.1080/02634937.2010.498231
[18] 杨善民. “一带一路”环球行动报告(2017)[M]. 北京: 社会科学文献出版社, 2017.
[19] Mazarzhanova K, Kopabayeva A, KÖSE N, et al. The first forest fire history of the Burabai Region (Kazakhstan) from tree rings of Pinus sylvestris[J]. Turkish Journal of Agriculture and Forestry, 2017, 41(3): 165-174.
[20] Spivak L F, Arkhipkin O P, Shagarova L V, et al. Fire space monitoring system in Kazakhstan[C]//IGARSS 2003.2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477). IEEE, 2003, 4: 2499-2501.
[21] Spivak L F, Arkhipkin O P, Sagatdinova G N. Development of fires space monitoring system in Kazakhstan[C]//Proceedings of 31st International Symposium on Remote Sensing of Environment. St. Petersburg. 2005.
[22] Spivak L, Arkhipkin O, Sagatdinova G. Development and prospects of the fire space monitoring system in Kazakhstan[J]. Frontiers of Earth Science, 2012, 6(3): 276-282. doi: 10.1007/s11707-012-0323-1
[23] Babu K V S, Kabdulova G, Kabzhanova G. Developing the forest fire danger index for the country Kazakhstan by using geospatial techniques[J]. Journal of Environmental Informatics Letters, 2019, 1: 48-59.
[24] Liu Y, Stanturf J, Goodrick S. Trends in global wildfire potential in a changing climate[J]. Forest Ecology and Management, 2010, 259(4): 685-697. doi: 10.1016/j.foreco.2009.09.002
[25] Groisman P Y, Sherstyukov B G, Razuvaev V N, et al. Potential forest fire danger over Northern Eurasia: changes during the 20th century[J]. Global and Planetary Change, 2007, 56(3-4): 371-386. doi: 10.1016/j.gloplacha.2006.07.029
[26] Bedia J, Herrera S, Gutiérrez J M, et al. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change[J]. Agricultural and Forest Meteorology, 2015, 214: 369-379.
[27] Dara A, Baumann M, Hölzel N, et al. Post-soviet land-use change affected fire regimes on the Eurasian steppes[J]. Ecosystems, 2019, 23(2020): 1-14.
[28] Klein I, Gessner U, Kuenzer C. Regional land cover mapping and change detection in Central Asia using MODIS time-series[J]. Applied Geography, 2012, 35(1-2): 219-234. doi: 10.1016/j.apgeog.2012.06.016
[29] Loboda T V, Giglio L, Boschetti L, et al. Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia[J]. Frontiers of Earth Science, 2012, 6(2): 196-205. doi: 10.1007/s11707-012-0313-3
[30] Ozturk T, Turp M T, Türkeş M, et al. Projected changes in temperature and precipitation climatology of Central Asia CORDEX Region 8 by using RegCM4.3. 5[J]. Atmospheric Research, 2017, 183: 296-307. doi: 10.1016/j.atmosres.2016.09.008
[31] Ta Z, Yu Y, Sun L, et al. Assessment of precipitation simulations in Central Asia by CMIP5 climate models[J]. Water, 2018, 10(11): 1516. doi: 10.3390/w10111516
[32] Li Y, Tao H, Su B, et al. Impacts of 1.5 C and 2 C global warming on winter snow depth in Central Asia[J]. Science of the Total Environment, 2019, 651: 2866-2873. doi: 10.1016/j.scitotenv.2018.10.126
[33] Jones C D, Hughes J K, Bellouin N, et al. The HadGEM2-ES implementation of CMIP5 centennial simulations[J]. Geoscientific Model Development, 2011, 4: 543-570. doi: 10.5194/gmd-4-543-2011
[34] Murakami D, Yamagata Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling[J]. Sustainability, 2019, 11(7): 2106. doi: 10.3390/su11072106
[35] Moss R H, Edmonds J, Hibbard K, et al. The next generation of scenarios for climate change research and assessment[J]. Nature, 2010, 463(7282): 747-756. doi: 10.1038/nature08823
[36] 曹丽格, 方 玉, 姜 彤, 等. IPCC 影响评估中的社会经济新情景(SSPs)进展[J]. 气候变化研究进展, 2012, 8(1):74-78. doi: 10.3969/j.issn.1673-1719.2012.01.012
[37] 颜 峻, 左 哲. 自然灾害风险评估指标体系及方法研究[J]. 中国安全科学学报, 2010, 20(11):61-65. doi: 10.3969/j.issn.1003-3033.2010.11.011
[38] 张晓玉, 田晓瑞. 厄尔尼诺/拉尼娜对大兴安岭森林火险天气的影响[J]. 林业科学研究, 2018, 31(6):55-62.
[39] Camia A, Amatulli G. Weather Factors and Fire Danger in the Mediterranean. In: Earth Observation of Wildland Fires in Mediterranean Ecosystems[M]. Springer, Berlin, Heidelberg, 2009.
[40] Sherstyukov B G. Index of Forest Fire. Yearbook of Weather, Climate and Ecology of Moscow[M]. Moscow: Moscow state university Publ. 2002.
[41] 宗学政, 田晓瑞, 田 恒, 等. 计划火烧对区域森林燃烧性的影响[J]. 林业科学研究, 2020, 33(03):54-62.
[42] Zong X, Tian X, Yin Y. Impacts of Climate Change on Wildfires in Central Asia[J]. Forests, 2020, 11(8):802.
[43] 胡俊锋, 李 仪, 张宝军, 等, 亚洲自然灾害管理体制机制研究[M]. 北京: 科学出版社, 2014.
[44] 李智勇, 斯特芬·曼(德), 叶 兵. 主要国家《森林法》比较研究[M]. 北京: 中国林业出版社, 2009.
[45] 杨 光, 腾 跃, 舒立福, 等. “一带一路”沿线区域森林草原防火概述[J]. 世界林业研究, 2018, 31(6):82-88.