[1] Kant S. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency[J]. Semin Cell Dev Biol, 2018, 74: 89-96. doi: 10.1016/j.semcdb.2017.08.034
[2] Krisztina Ötvös, Marco Marconi, Andrea Vega, et al. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport[J]. EMBO J, 2021, 40(3): e106862.
[3] Luo J, Zhou J-J, et al. Growth performance, photosynthesis, and root characteristics are associated with nitrogen use efficiency in six poplar species[J]. Environmental and Experimental Botany, 2019, 164: 40-51. doi: 10.1016/j.envexpbot.2019.04.013
[4] Rennenberg H, Wildhagen H, Ehlting B. Nitrogen nutrition of poplar trees[J]. Plant Biology, 2010, 12(2): 275-291. doi: 10.1111/j.1438-8677.2009.00309.x
[5] 卢孟柱, 胡建军, 我国转基因杨树的研究及应用现状[J]. 林业科技开发, 2007, 20(6): 1-4.
[6] Qu CP, Xu ZR, Hu YB, et al. RNA-SEQ reveals transcriptional level changes of poplar roots in different forms of nitrogen treatments[J]. Front Plant Sci, 2016, 7: 51.
[7] Zhou J, Lu Y, Shi WG, et al. Physiological characteristics and RNA sequencing in two root zones with contrasting nitrate assimilation of Populus × canescens[J]. Tree Physiol, 2020, 40(10): 1392-1404. Zhang Y, Fang L, Jing P. Analysis of broad leaved forest carbon sinks changes and forest economics and management in China[J]. Environmental Science and Pollution Research, 2019, 27(12): 12922-12931.
[8] Rewald B, Kunze ME, Godbold DL. NH4 : NO3 nutrition influence on biomass productivity and root respiration of poplar and willow clones[J]. GCB Bioenergy, 2016, 8(1): 51-58. Castro-Rodríguez V, García-Gutiérrez A, Canales J, et al. Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy[J]. Plant Biotechnology Journal, 2016, 14(1): 299-312.
[9] Wei H, Yordanov YS, Georgieva T, et al. Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks[J]. New Phytol, 2013, 200(2): 483-497. doi: 10.1111/nph.12375
[10] Dash M, Yordanov YS, Georgieva T, et al. A network of genes associated with poplar root development in response to low nitrogen[J]. Plant Signal Behav, 2016, 11(8): e1214792. doi: 10.1080/15592324.2016.1214792
[11] Zhou X, Jacobs TB, Xue LJ, et al. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial populus reveals 4-coumarate: CoA ligase specificity and redundancy[J]. New Phytol, 2015, 208(2): 298-301. doi: 10.1111/nph.13470
[12] Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods, 2008, 5(7): 621-628. doi: 10.1038/nmeth.1226
[13] Conesa A, Götz S, García-Gómez JM, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18): 3674-3676. doi: 10.1093/bioinformatics/bti610
[14] Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Res, 2008, 36(Database issue): D480-484.
[15] Lu Y, Deng S, Li Z, et al. Competing endogenous RNA networks underlying anatomical and physiological characteristics of poplar wood in acclimation to low nitrogen availability[J]. Plant Cell Physiology, 2019, 60(11): 2478-2495. doi: 10.1093/pcp/pcz146
[16] Sorin C, Declerck M, Christ A, et al. A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis[J]. New Phytologist, 2014, 202(4): 1197-1211. doi: 10.1111/nph.12735
[17] Gutiérrez RA. Systems biology for enhanced plant nitrogen nutrition[J]. Science, 2012, 336(6089): 1673-1675. doi: 10.1126/science.1217620
[18] Qu B, He X, Wang J, et al. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input[J]. Plant Physiology, 2015, 167(2): 411-423. doi: 10.1104/pp.114.246959
[19] Bouguyon E, Brun F, Meynard D, et al. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1[J]. Nature Plants, 2015, 1(3): 15015. doi: 10.1038/nplants.2015.15
[20] Fu YF, Zhang ZW, Yang XY, et al. Nitrate reductase is a key enzyme responsible for nitrogen-regulated auxin accumulation in Arabidopsis roots[J]. Biochem Biophys Res Commun, 2020, 532(4): 633-639. doi: 10.1016/j.bbrc.2020.08.057
[21] Sun H, Li J, Song W, Tao J, et al. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice[J]. J Exp Bot, 2015, 66(9): 2449-2459. doi: 10.1093/jxb/erv030
[22] Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future[J]. Genetics, 2013, 193(3): 651-669. doi: 10.1534/genetics.112.146704
[23] 索沛蘅, 杜大俊, 王玉哲, 等. 杉木连栽对土壤氮含量和氮转化酶活性的影响[J]. 森林与环境学报, 2019, 39(2):113-119.
[24] Le Luo, Yali Zhang, Guohua Xu. How does nitrogen shape plant architecture?[J]. J Exp Bot, 2020, 71(15): 4415-4427. doi: 10.1093/jxb/eraa187
[25] Oldroyd GED, Leyser O. A plant’s diet, surviving in a variable nutrient environment[J]. Science, 2020, 368(6486): eaba0196. doi: 10.1126/science.aba0196
[26] Wang S, Lu T, Xue Q, et al. Antioxidation and symbiotic nitrogen fixation function of prxA gene in Mesorhizobium huakuii[J]. Microbiologyopen, 2019, 8(10): e889.
[27] Müller SM, Wang S, Telman W, et al. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response[J]. Plant J, 2017, 91(6): 995-1014. doi: 10.1111/tpj.13622
[28] Li H, Hu B, Wang W, et al. Identification of microRNAs in rice root in response to nitrate and ammonium[J]. J Genet Genomics, 2016, 43(11): 651-661. doi: 10.1016/j.jgg.2015.12.002
[29] Yu C, Chen Y, Cao Y, et al. Overexpression of miR169o, an overlapping microRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in rice[J]. Plant and Cell Physiology, 2018, 59(6): 1234-1247. doi: 10.1093/pcp/pcy060
[30] Gifford ML, Dean A, Gutierrez RA, et al. Cell-specific nitrogen responses mediate developmental plasticity[J]. PNAS, 2008, 105(2): 803-808. doi: 10.1073/pnas.0709559105
[31] Ho CH, Lin SH, Hu HC, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-94. doi: 10.1016/j.cell.2009.07.004
[32] Luo J, Zhou J, Li H, et al. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess[J]. Tree Physioloy, 2015, 35(12): 1283-1302. doi: 10.1093/treephys/tpv091
[33] Luo J, Qin J, He F, et al. Net fluxes of ammonium and nitrate in association with H + fluxes in fine roots of Populus popularis[J]. Planta, 2013, 237(4): 919-931. doi: 10.1007/s00425-012-1807-7