[1] Jitendra A, Subodh K M. Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India[J]. Catena, 2016, 140: 155-163. doi: 10.1016/j.catena.2016.01.028
[2] 黄元仿, 张世文, 张立平, 等. 露天煤矿土地复垦生物多样性保护与恢复研究进展[J]. 农业机械学报, 2015, 46(8):72-82. doi: 10.6041/j.issn.1000-1298.2015.08.012
[3] 罗 明. 土地复垦潜力调查评价研究[M]. 北京: 中国农业科学技术出版社, 2013.
[4] 舒媛媛, 黄俊胜, 赵高卷, 等. 青藏高原东缘不同树种人工林对土壤酶活性及养分的影响[J]. 生态学报, 2016, 36(2):394-402.
[5] 陈宗定, 许春雪, 安子怡, 等. 土壤碳赋存形态及分析方法研究进展[J]. 岩矿测试, 2019, 38(2):233-244.
[6] Xie J X, Li Y, Zhai C X, et al. CO2 absorption by alkaline soils and its implication to the global carbon cycle[J]. Environmental Geology, 2009, 56(5): 953-961. doi: 10.1007/s00254-008-1197-0
[7] Sharma V, Hussain S, Sharma K R, et al. Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems[J]. Geoderma, 2014, 232-234: 81-87. doi: 10.1016/j.geoderma.2014.04.039
[8] 高艺宁, 许 丽, 林凤友, 等. 矿区复垦地土壤有机碳分布及与土壤化学特性的关系[J]. 内蒙古农业大学学报: 自然科学版, 2016, 37(1):54-60.
[9] 蒋小董, 郑嗣蕊, 杨咪咪, 等. 毛乌素沙地固沙林发育过程中土壤有机碳库稳定性特征[J]. 应用生态学报, 2019, 30(8):2567-2574.
[10] 李 华, 李永青, 沈成斌, 等. 风化煤施用对黄土高原露天煤矿区复垦土壤理化性质的影响研究[J]. 农业环境科学学报, 2008, 27(5):1752-1756. doi: 10.3321/j.issn:1672-2043.2008.05.011
[11] 白文霞. 安太堡露天矿复垦地典型植被-土壤系统生态效应研究[D]. 太原, 山西大学, 2018.
[12] 刘春红. 2019年上半年煤炭市场供求情况分析以及下半年走势预测[J]. 商业经济研究, 2019, 21:185-186. doi: 10.3969/j.issn.1002-5863.2019.15.051
[13] Reynolds B, Reddy K J. Infiltration rates in reclaimed surface coal mines[J]. Water Air Soil Pollution, 2012, 223: 5941-5958. doi: 10.1007/s11270-012-1330-2
[14] Shrestha R K, Lal R. Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio[J]. Plant Soil, 2008, 306: 249-260. doi: 10.1007/s11104-008-9578-4
[15] 王旭东, 李 忠, 包伟民, 等. 乌海气候生产力对气候暖干化的响应[J]. 干旱区资源与环境, 2010, 24(12):101-105.
[16] 高瑞如, 赵瑞华. 干旱荒漠区植被恢复与重建的探讨[J]. 新疆环境保护, 2004, 26(1):21-24. doi: 10.3969/j.issn.1008-2301.2004.01.006
[17] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
[18] 张 瑞, 张贵龙, 姬艳艳, 等. 不同施肥措施对土壤活性有机碳的影响[J]. 环境科学, 2013, 34(1):277-282.
[19] Mclatchey G P, Reddy K R. Regulation of organic matter decomposition and nutrient release in a wetland soil[J]. Journal of Environmental Quality, 1998, 27(5): 1268-1274.
[20] Deng S P, Tabatabai M A. Colorimetric determination of reducing sugars in soils[J]. Soil Biology and Biochemistry, 1994, 26(4): 473-477.
[21] Cambardella C A, Elliott E T. Participate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56: 777-783. doi: 10.2136/sssaj1992.03615995005600030017x
[22] 孔君洽, 杨 荣, 苏永中, 等. 基于土地利用/覆盖变化的荒漠绿洲碳储量动态评估[J]. 生态学报, 2018, 38(21):7801-7812.
[23] Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J]. Soil Biology and Biochemistry, 2000, 32(2): 0-219.
[24] 全国土壤普查办公室. 中国土壤普查数据[M]. 北京: 中国农业出版社, 1997.
[25] Jandl R, Sollins P. Water-extractable soil carbon in relation to the below ground carbon cycle[J]. Biology and Fertility, 1997, 25(2): 196-201. doi: 10.1007/s003740050303
[26] 王 宁, 罗佳琳, 赵亚慧, 等. 不同麦秸还田模式对稻田土壤微生物活性和微生物群落组成的影响[J]. 农业环境科学学报, 2020, 39(1):125-133. doi: 10.11654/jaes.2019-0956
[27] 李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4):544-552. doi: 10.3321/j.issn:0564-3929.2004.04.008
[28] Shi H J, Wang X J, Zhao Y J, et al. Relationship between soil inorganic carbon and organic carbon in the wheat-maize cropland of the North China Plain[J]. Plant & Soil, 2017, 18(1-2): 1-14.
[29] 尚 杰, 耿增超, 陈心想, 等. 施用生物炭对旱作农田土壤有机碳、氮及其组分的影响[J]. 农业环境科学学报, 2015, 34(3):509-517. doi: 10.11654/jaes.2015.03.013
[30] Zougagh M, Rios A, Valcarcel M. Direct determination of total carbonate salts in soil samples by continuous – flow piezoelectric detection[J]. Talanta, 2005, 65(1): 29-35.
[31] 王凯荣, 刘 鑫, 周卫军, 等. 稻田系统养分循环利用对土壤肥力和可持续生产力的影响[J]. 农业环境科学学报, 2004, 23(6):1041-1045. doi: 10.3321/j.issn:1672-2043.2004.06.001
[32] 邹晓君, 薛 立. 林下经济经营模式对土壤理化性质和碳储量的影响研究进展[J]. 广东农业科学, 2019, 46(2):79-87.
[33] Araujo A S F, Leite L F C, Iwata B D F, et al. Microbiological process in agroforestry systems. A review[J]. Agronomy for Sustainable Development, 2012, 32(1): 215-226. doi: 10.1007/s13593-011-0026-0
[34] 胡霭堂, 周立群. 植物营养学: 下册[M]. 北京: 中国农业出版社, 2007.
[35] Rousk J, Frey S D. Revisiting the hypothesis that fungal-to-bacterial dominance characterizes turnover of soil organic matter and nutrients[J]. Ecological Monographs, 2015, 85(3): 457-472. doi: 10.1890/14-1796.1
[36] Hu Y, Xiang D, Veresoglou S D, et al. Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China[J]. Soil Biology&Biochemistry, 2014, 77: 51-57.