[1] Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds[J]. The Plant Journal, 2008, 54(4): 712-732
[2] 李杨昕. 大久保桃果实特征香气物质低温代谢障碍的基础研究 [D]. 北京:中国林业科学研究院, 2010
[3] 蔡 琰, 余美丽, 邢宏杰, 等.低温预贮处理对冷藏水蜜桃冷害和品质的影响[J]. 农业工程学报, 2010, 26(6): 334-338
[4] Lurie S, Crisosto C H. Chilling injury in peach and nectarine[J]. Postharvest Biology and Technology, 2005, 37(3): 195-208
[5] Cantín C M, Crisosto C H, Ogundiwin E A, et al. Chilling injury susceptibility in an intra-specific peach ((Prunus persica (L.) Batsch) progeny[J]. Postharvest Biology and Technology, 2010, 58(2): 79-87
[6] Lewinsohn E, Schalechet F, Wilkinson J, et al. Enhanced Levels of the Aroma and Flavor Compound S-Linalool by Metabolic Engineering of the Terpenoid Pathway in Tomato Fruits[J]. Plant Physiology, 2001, 127(3):1256-1265
[7] Engel K H, Ramming J D W, Flath R A, et al. Investigation of Volatile Constituents in Nectarines. 2. Changes in Aroma Composition during Nectarine Maturation[J]. Journal of Agricultural and Food Chemistry, 1988, 36(5): 1003-1006
[8] Staudt M , Jackson B, El-aouni H, et al. Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative[J]. Tree Physiology, 2010, 30(10): 1320-1334
[9] Lombardo V A, Osorio S, Borsani J, et al. Metabolic Profiling during Peach Fruit Development and Ripening Reveals the Metabolic Networks That Underpin Each Developmental Stage[J]. Plant Physiology, 2011, 157(4): 1696-1710
[10] Ayala-Zavala J F, Wang S Y, Wang C Y, et al. Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit[J]. LWT-Food Science and Technology, 2004, 37(7): 687-695
[11] Li Bin, JiaHui-juan, Zhang Xiao-meng. Effects of Fruit Pre-harvest Bagging on Fruit Quality of Peach (Prunus persica Batsch cv. Hujingmilu)[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(3):287-292
[12] Wang Y J, Yang C X, Li S H, et al. Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS[J]. Food Chemistry, 2009, 116(1): 356-364
[13] Eduardo I, Chietera G, Bassi D, et al. Identification of key odor volatile compounds in the essential oil of nine peach accessions[J]. Journal of the Science of Food and Agriculture, 2010, 90(7): 1146-1154
[14] 李 明, 王利平, 张 阳, 等. 水蜜桃品种间果香成分的固相微萃取-气质联用分析[J].园艺学报,2006,33(5):1071-1074
[15] Vernin G, Vernin E, Vernin C, et al. Extraction and GC-MS-SPECMA data bank analysis of the aroma of Psidium guajava L. fruit from Egypt[J]. Flavour and Fragrance Journal, 1991, 6(2): 143-148
[16] Xu Y, Fan W L, Qian M C. Characterization of Aroma Compounds in Apple Cider Using Solvent-Assisted Flavor Evaporation and Headspace Solid-Phase Microextraction[J]. Journal of Agricultural and Food Chemistry, 2007, 55(8): 3051-3057
[17] Beekwilder J, Alvarez-Huerta M, Neef E, et al. Functional characterization of enzymes forming volatile esters from straw-berry and banana[J]. Plant Physiology, 2004, 135(4):1865-1878
[18] Zhang B, Shen J Y, Wei W W, et al. Expression of Genes Associated with Aroma Formation Derived from the Fatty Acid Pathway during Peach Fruit Ripening[J]. Journal of the Science of Food and Agriculture, 2010, 58(10): 6157-6165
[19] González-Agüero M, Troncoso S, Gudenschwager O, et al. Differential expression levels of aroma-related genes during ripening of apricot (Prunus armeniaca L.) [J]. Plant Physiology and Biochemistry, 2009, 47(5): 435-440
[20] Günther C S, Chervin C, Marsh K B, et al. Characterisation of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences[J]. Phytochemistry, 2011, 72(8): 700-710
[21] El-Sharkawy I, Manríquez D, Flores F B, et al. Functional Characterization of a Melon Alcohol Acyl-transferase Gene Family Involved in the Biosynthesis of Ester Volatiles. Identification of the Crucial Role of a Threonine Residue for Enzyme Activity [J]. Plant Molecular Biology, 2005, 59(2): 345-362
[22] 冯燕青, 赵 聪, 马乐园, 等.甜瓜果实醇酰基转移酶基因的克隆及表达分析[J]. 山东农业科学, 2009(5): 1-3
[23] Aharoni A, Keizer L C P, Bouwmeester H J, et al. Identification of the SAAT Gene Involved in Strawberry Flavor Biogenesis by Use of DNA Microarrays[J]. The Plant Cell, 2000, 12(5):647-661
[24] Cumplido-Laso G, Medina-Puche L, Moyano E, et al. The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis[J]. Journal of Experimental Botany,2012,63(11):4275-4290
[25] Souleyre E J F, Greenwood D R, Friel E N, et al. An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor[J]. FEBS Journal, 2005, 272(12): 3132-3144
[26] Balbontín C, Gaete-Eastman C, Fuentes L, et al. VpAAT1, a Gene Encoding an Alcohol Acyltransferase, Is Involved in Ester Biosynthesis during Ripening of Mountain Papaya Fruit[J]. Journal of Agricultural and Food Chemistry, 2010, 58 (8): 5114-5121
[27] Xi W P, Zhang B, Shen J Y, et al. Intermittent warming alleviated the loss of peach fruit aroma-related esters by regulation of AAT during cold storage[J]. Postharvest Biology and Technology, 2012a, 74:42-48
[28] Yahyaoui F E L, Wongs-Aree C, Latché A, et al. Molecular and biochemical characteristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening[J]. European Journal of Biochemistry, 2002, 269(9): 2359-2366
[29] Morales-Quintana L, Fuentes L, Gaete-Eastman C, et al. Structural characterization and substrate specificity of VpAAT1 protein related to ester biosynthesis in mountain papaya fruit[J]. Journal of Molecular Graphics and Modelling, 2010, 29(5): 635-642
[30] Morales-Quintana L, Nu ez-Tobar M X, Moya-León M A, et al. Molecular Dynamics Simulation and Site-Directed Mutagenesis of Alcohol Acyltransferase: A Proposed Mechanism of Catalysis[J]. Journal of Chemical Information and Modeling, 2013, 53 (10): 2689-2700
[31] Defilippi B G, Kader A A, Dandekar A M. Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene[J]. Plant Science, 2005,168(5):1199-1210
[32] Balbontín C, Gaete-Eastman C, Vergara M, et al. Treatment with 1-MCP and the role of ethylene in aroma development of mountain papaya fruit[J]. Postharvest Biology and Technology, 2007, 43(1): 67-77
[33] Xi W P, Zhang B, Liang L, et al. Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit Plant[J]. Cell and Environment, 2012b, 35(3): 534-545
[34] Aly M M, El-Agamy S Z A, Biggs R H. Ethylene production and firmness of peach and nectarine fruits as related to storage[J]. Proc Fla State Hort Soc, 1981(94):291-294
[35] 李杨昕, 王贵禧, 梁丽松. '大久保' 桃常温贮藏过程中香气成分变化及其与乙烯释放的关系[J]. 园艺学报, 2011, 38(1): 35-42
[36] 胡花丽, 梁丽松, 王贵禧, 等. 外源乙烯对CA贮藏桃果实MDA含量、PPO和LOX活性变化的影响[J]. 西北林学院学报, 2007, 22(3): 38-42
[37] Marchler-Bauer A, Lu S, Anderson J B, et al. CDD: a Conserved Domain Database for the functional annotation of proteins[J]. Nucleic Acids Research, 2011, 39(1):225-229
[38] Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739
[39] Tong Z G, Gao Z H, Wang F, et al. Selection of reliable reference genes for gene expression studies in peach using real-time PCR [J]. BMC Molecular Biology, 2009, 10:71(doi:10.1186/1471-2199-10-71)
[40] Livak K J and Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT Method[J]. Methods, 2001(25): 402-408
[41] 魏好程. 桃果实采后贮藏保鲜及其品质控制的研究 . 儋州:华南热带农业大学, 2005
[42] Camps C, Guilermin P, Mauget J C, et al. Data analysis of penetrometric force/displacement curves for the characterization of whole apple fruits[J]. Journal of Texture Studies, 2005, 36(4): 387-401
[43] 胡花丽,梁丽松, 李鹏霞, 等. 外源乙烯对CA 贮藏桃果实内源乙烯生物合成的影响[J]. 保鲜与加工, 2008(48):34-37
[44] Sánchez G, Venegas-Calerón M, Salas J J, et al. An integrative "omics" approach identifies new candidate genes to impact aroma volatiles in peach fruit[J]. BMC Genomics, 2013, 14:343(doi:10.1186/1471-2164-14-343)
[45] 席万鹏, 郁松林, 周志钦.桃果实香气物质生物合成研究进展[J]. 园艺学报, 2013, 40(9): 1679-1690
[46] Burg S P, Burg E A. Role of Ethylene in Fruit Ripening[J]. Plant Physiol, 1962, 37(2): 179-189
[47] Saltveit M E. Effect of ethylene on quality of fresh fruits and vegetables[J]. Postharvest Biology and Technology, 1999, 15(3): 279-292
[48] Nath P, Trivedi P K, Sane V A, et al. Role of Ethylene in Fruit Ripening[M]// Khan N A. Ethylene Action in Plants Germany Berlin Heidelberg:Springer-Verlag,2006:151-186(10.1007/978-3-540-32846-9_8)
[49] Barry C S, Giovannoni J J. Ethylene and Fruit Ripening[J]. Journal of Plant Growth Regulation, 2007, 26(2): 143-159
[50] Hayama H, Shimada T, Fujii H, et al. Ethylene-regulation of fruit softening and softening-related genes in peach[J]. Journal of Experimental Botany, 2006, 57(15): 4071-4077
[51] Ortiz A, Graell J, López M L, et al. Volatile ester-synthesising capacity in 'Tardibelle' peach fruit in response to controlled atmosphere and 1-MCP treatment[J]. Food Chemistry, 2010, 123(3): 698-704
[52] Vendramini A L,Trugo L C. Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity[J]. Food Chemistry, 2000, 71(2): 195-198
[53] Schaffer R J, Friel E N, Souleyre E J F, et al. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway[J]. Plant Physiology, 2007, 144 (4): 1899-1912
[54] Li D P, Xu Y F, Xu G M, et al. Molecular cloning and expression of a gene encoding alcohol acyltransferase (MdAAT2) from apple (cv. Golden Delicious) [J]. Phytochemistry, 2006, 67(7): 658-667
[55] King A, Nam J W, Han J, et al. Cuticular wax biosynthesis in petunia petals: cloning and characterization of an alcohol-acyltransferase that synthesizes wax-esters[J]. Planta, 2007, 226(2):381-394