[1] Steeves T A, Sussex I M. Patterns in plant development[M]. Cambridge:Syndicate of the university of Cambridge, 1989: 6-10.
[2] Takacs E M, Du C, Ponnala L, et al. Ontogeny of the Maize Shoot Apical Meristem[J]. The Plant Cell, 2012, 24(8): 3219-3234.
[3] Barton M. Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo[J]. Developmental biology, 2010, 341(1): 95-113.
[4] Bowman J L, Eshed Y. Formation and maintenance of the shoot apical meristem[J]. Trends in plant science, 2000, 5(3): 110-115.
[5] 王占军, 陈金慧, 施季森. 植物干细胞中WUS/CLV反馈调控机制的研究进展[J]. 林业科学, 2011, 47(4): 159-165.
[6] 姜 妍, 祖 伟, 吴存祥. 茎顶端分生组织在植物发育过程中的保持, 转变和逆转[J]. 细胞生物学杂志, 2008, 30(2): 147-152.
[7] Endrizzi K, Moussian B, Haecker A, et al. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE[J]. The Plant Journal, 1996, 10(6): 967-979.
[8] Ung N, Lal S, Smith H M S. The Role of PENNYWISE and POUND-FOOLISH in the Maintenance of the Shoot Apical Meristem in Arabidopsis[J]. Plant physiology, 2011, 156(2): 605-614.
[9] Hibara K I, Takada S, Tasaka M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation[J]. The Plant Journal, 2003, 36(5): 687-696.
[10] Schultz E A, Haughn G W. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis[J]. The Plant Cell, 1991, 3(8): 771-781.
[11] Yadav R K, Girke T, Pasala S, et al. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche[J]. Proceedings of the National Academy of Sciences, 2009, 106(12): 4941-4946.
[12] 徐 芳, 熊爱生, 彭日荷, 等. 植物遗传转化的新方法[J]. 中国蔬菜, 2005,1(3):29-31.
[13] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal, 1998, 16(6): 735-743.
[14] Cecchetti V, Pomponi M, Altamura M M, et al. Expression of rolB in tobacco flowers affects the coordinated processes of anther dehiscence and style elongation[J]. The Plant Journal, 2004, 38(3): 512-525.
[15] Kipreos E T, Pagano M. The F-box protein family[J]. Genome Biol, 2000, 1(5): 1-7.
[16] Xu G, Ma H, Nei M, et al. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification[J]. Proceedings of the National Academy of Sciences, 2009, 106(3): 835-840.
[17] Dharmasiri N, Dharmasiri S, Weijers D, et al. Plant development is regulated by a family of auxin receptor F-box proteins[J]. Developmental cell, 2005, 9(1): 109-119.
[18] Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 446-451.
[19] Benková E, Michniewicz M, Sauer M, et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation[J]. Cell, 2003, 115(5): 591-602.
[20] Spinelli S V, Martin A P, Viola I L, et al. A mechanistic link between STM and CUC1 during Arabidopsis development[J]. Plant physiology, 2011, 156(4): 1894-1904.
[21] Xu L, Xu Y, Dong A, et al. Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity[J]. Development, 2003, 130(17): 4097-4107.
[22] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development[J]. Nature, 1991, 353(6339): 31-37.
[23] Ahn J H, Miller D, Winter V J, et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1[J]. The EMBO journal, 2006, 25(3): 605-614.