[1] Lau S, Shao N, Bock R, et al. Auxin signaling in algal lineages:fact or myth?[J].Trends in plant science, 2009, 14(4):182-188.
[2] Salehin, M., Bagchi, R., Estelle, M. SCFTIR1/AFB-based auxin perception:mechanism and role in plant growth and development[J]. The Plant Cell, 2015, 27(1):9-19.
[3] Yu H, Moss B L, Jang S S, et al. Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity[J]. Plant physiology, 2013, 162(1):295-303.
[4] Villalobos L I A C, Lee S, De Oliveira C, et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin[J]. Nature Chemical Biology, 2012, 8(5):477-485.
[5] Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435:441-445.
[6] Parry G, Calderon-Villalobos L, Prigge M, et al. Complex regulation of the TIR1/AFB family of auxin receptors[J]. Proceedings of the National Academy of Sciences, 2009, 106:22540-22545.
[7] Hu Z, Keçeli M A, Piisilä M, et al. F-box protein AFB4 plays a crucial role in plant growth, development and innate immunity[J]. Cell research, 2012, 22:777-781.
[8] Ruegger M, Dewey E, Gray W M, et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p[J]. Genes & Development, 1998, 12(2):198-207.
[9] Ren Z, Li Z, Miao Q, et al. The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis[J]. Journal of experimental botany, 2011, 62(8):2815-2826.
[10] Bian H, Xie Y, Guo F, et al. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice(Oryza sativa)[J]. New Phytologist, 2012, 196(1):149-161.
[11] 甘肖梅.桂林岩溶石山阴香光合生理生态特性研究.广西:广西师范大学硕士论文, 2010.
[12] Peer W A. From perception to attenuation:auxin signalling and responses[J]. Current opinion in plant biology,2013,16(5):561-568.
[13] Jurado S, Díaz-Triviño S, Abraham Z, et al. SKP2A, an F-box protein that regulates cell division, is degraded via the ubiquitin pathway[J]. The Plant Journal, 2008, 53(5):828-841.
[14] Ljung K. Auxin metabolism and homeostasis during plant development[J]. Development, 2013, 40:943-950.
[15] Xie Q, Frugis G, Colgan D, et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes & Development, 2000, 14(23):3024-3036.
[16] Guseman J M, Hellmuth A, Lanctot A, et al. Auxin-induced degradation dynamics set the pace for lateral root development[J]. Development, 2015, 142(5):905-909.
[17] Piya S, Shrestha S K, Binder B, et al. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis[J]. Frontiers in Plant Science, 2014, 5:1-9.
[18] Gupta A, Singh M, Laxmi A. Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis[J]. Plant Physiology, 2015, 168(1):307-320.
[19] Xia K, Wang R, Ou X, et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice[J]. PLoS One, 2012, 7(1):e30039.