[1] 苏晓华, 张绮纹, 郑先武, 等. 美洲黑杨(Populus deltoids Marsh)×青杨(P.cathayana Rehd.)分子连锁图谱的构建[J]. 林业科学,1998,34(6):29-37.
[2] Parsons T J, Sinkar V P, Stettler R F, et al. Transformation of poplar by Agrobacterium tumefaciens[J]. Bio/Technology, 1986, 4: 533-536.
[3] Bradshwa H, Stettler R. Molecular genetics of growth and development in Populus[J]. Hereditas, 1940, 26: 367-378.
[4] 田颖川, 李太元, 莽克强, 等. 抗虫转基因欧州黑杨的培育[J]. 生物工程学报,1993,9(4):291-297.
[5] 田颖川, 郑均宝, 虞红梅, 等. 转双抗虫基因杂种741毛白杨的研究[J]. 植物学报,2000,42(3):263-268.
[6] 王学聘, 韩一凡, 戴莲韵, 等. 抗虫转基因欧美杨的培育[J]. 林业科学,1997,33(1): 69-74.
[7] 饶红宇, 陈 英, 黄敏仁, 等. 杨树NL-80106转Bt基因植株的获得及抗虫性[J]. 植物资源与环境学报,2000,9(2):1-5.
[8] 李科友, 樊军锋, 赵 忠, 等. 转双价抗虫基因毛白杨无性系85号抗虫性研究[J]. 西北植物学报,2007,27(8):1537-1543.
[9] Zhang B, Chen M, Zhang X, et al. Laboratory and field evaluation of the transgenic Populus alba × Populus glandulosa expressing double coleopteran-resistance genes[J]. Tree Physiology, 2011, 31: 567-573.
[10] 张 雁, 郭同斌, 潘惠新, 等. 转Bt基因南林895杨抗虫性及对土壤微生物影响分析[J]. 林业科学研究,2012,25(3):346-350.
[11] Genissel A, Leple J C, Millet N, et al. High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp tenebrionis[J]. Molecular Breeding, 2003, 11: 103-110.
[12] Klocko A L, Meilan R, James R R, et al. Bt-Cry3Aa transgene expression reduces insect damage and improves growth in field-grown hybrid poplar[J]. Can J For Res, 2014, 44: 28-35.
[13] Leple J C, Bottino B M, Augustin S, et al. Toxicity to Chrysomela tremulae (Coleoptera:Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor[J]. Molecular Breeding, 1995, 1: 319-328.
[14] 伍宁丰, 孙 芹, 姚 斌, 等. 抗虫的转AaIT基因杨树的获得[J]. 生物工程学报,2000, 16(2):129-133.
[15] Fillatti J J, Kiser J, Rose R, et al. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector[J]. Nature Biotechnol, 1987, 5: 726-730.
[16] DeBlock M. Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones[J]. Plant Physiol, 1990, 93: 1110-1116.
[17] Brasileiro A, Tourneur C, Leple J C, et al. Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants[J]. Trans Research, 1992, 1: 133-141.
[18] Gullner G, Komives T, Rennenberg H. Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides[J]. J Exp Bot, 2001, 52: 971-979.
[19] Meilan R, Han K, Ma C, et al. The CP4 transgene provides high levels of tolerance to Roundup herbicide in field-grown hybrid poplars[J]. Can J Forest Research, 2002, 32: 967-976.
[20] Li J, Meilan R, Ma C, et al. Stability of herbicide resistance over 8 years of coppice in field-grown, genetically engineered poplars[J]. Western Journal of Applied Forestry, 2008, 23(2): 89-93.
[21] Sewalt VJH, Ni W T, Blount JW, et al. Reduced lignin content and altered lignin composition in transgenic tobacco downregulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase[J]. Plant Physiol, 1997, 115: 41-50.
[22] Li L, Zhou Y, Cheng X, et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation[J]. Proc Natl Acad Sci USA, 2003, 100: 4939-4944.
[23] Meyermans H, Morreel K, Lapierre C. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-egulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis[J]. J Biol Chem, 2000, 275: 36899-36909.
[24] Franke R, McMichael CM, Meyer K, et al. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase[J]. Plant J, 2000, 22: 223 -234.
[25] Baucher M, Chabbert B, Pilate G, et al. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar[J]. Plant Physiol, 1996, 112 (4) : 1479-1490.
[26] Zhong R, Morrison III W H, Himmelsbach D S, et al. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants[J]. Plant Physiol, 2000, 124: 563-577.
[27] Rouque-Rivera R, Talhelm A F, Johnson D W, et al. Effects of lignin-modified Populus tremuloides on soil organic carbon[J]. Journal of Plant Nutrition and Soil Science, 2011, 174: 818-826.
[28] Thakur A K, Aggarwal G, Sribastaba D K. Genetic modification of lignin biosynthetic pathway in Populus ciliata Wall. via Agrobacterium-mediated antisense CAD gene transfer for quality paper production[J]. Natl Acad Sci Lett, 2012, 35(2): 79-84.
[29] Coleman H D, Canovas F M, Man H, et al. Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula × alba) (717-1B4)[J]. Plant Biotechnology Journal, 2012, 10: 883-889.
[30] Lu S, Li Q, Wei H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proc Natl Acad Sci USA, 2013, 110: 10848-10853.
[31] Li C, Wang X, Lu W, et al. A poplar R2R3-MYB transcription factor, PtrMYB152, is involved in regulation of lignin biosynthesis during secondary cell wall formation[J]. Plant Cell Tiss Organ Cult, 2014, 119(3): 553-563.
[32] Payyavula R S, Tschaplinski T J, Jawdy S S, et al. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus[J]. BMC Plant Biol, 2014, 14(1): 265-278.
[33] Ko J H, Kim H T, Hwang I, et al. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar[J]. Plant Biotechnology Journal, 2012, 10: 587-596.
[34] Wang H Z, Xue Y X, Chen YJ, et al. Lignin modification improves the biofuel production potential in transgenic Populus tomentosa[J]. Industrial Crops and Products, 2012, 37: 170-177.
[35] Stout A T, Davis A A, Domec J C, et al. Growth under field conditions affects lignin content and producitivity in transgenic Populus trichocarpa with altered lignin biosynthesis[J]. Biomass and Bioenergy, 2014, 68: 228-239.
[36] 刘凤华, 郭 岩, 谷冬梅, 等. 转甜菜碱醛脱氢酶基因植物的耐盐性研究[J]. 遗传学报,1997,24(1):54-58.
[37] Li Y, Su X, Zhang B, et al. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance[J]. Tree Physiology, 2009, 29: 273-279.
[38] Du N, Liu X, Li Y, et al. Genetic transformation of Populus tomentosa to improve salt tolerance[J]. Plant Cell Tiss Organ Cult, 2012, 108: 181-189.
[39] Han M S, Noh E W, Han S H. Enhanced drought and salt tolerance by expression of AtGSK1 gene in poplar[J]. Plant Biotechnol Rep, 2013, 7: 39-47.
[40] Tang R J, Yang Y, Yang L, et al. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane[J]. Plant, Cell and Environment, 2014, 37: 573-58.
[41] Benedict C, Skinner J S, Meng R, et al. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp[J]. Plant, Cell Environ, 2006, 29: 1259-1272.
[42] Behnke K, Ehlting B, Teuber M, et al. Transgenic, non-isoprene emitting poplars don't like it hot[J]. Plant J, 2007, 51: 485-499.
[43] 赵世民, 祖国诚, 刘根齐, 等. 通过农杆菌介导法将兔防御素NP-1基因导入毛白杨(P. tomentosa)[J]. 遗传学报,1999,26(6):711-714.
[44] Liang H, Catranis C M, Maynard C A, et al. Enhanced resistance to the poplar fungal pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides[J]. Biotechnol Lett, 2002, 24: 383-389.
[45] 孟 亮,李红双,金德敏, 等. 转几丁质酶基因黑杨的获得[J]. 生物技术通报,2004,3:48-51.
[46] Huang Y, Liu H, Jia Z, et al. Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens[J]. Tree Physiology, 2012, 32: 1313-1320.
[47] 金 慧,栾雨时. 转录因子在植物抗病基因工程中的研究进展[J]. 中国生物工程杂志,2010,30(10):94-99.
[48] Levee V, Major I, Levasseur C, et al. Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense[J]. New Phytologist, 2009, 184: 48-70.
[49] Tuominen H, Sitbon F, Jacobsson C, et al. Altered growth and wood characteristics in transgenic hybrid Aspen expressing Agrobacterium fumefaciens T-DNA indoleacetic acid-biosynthetic genes[J]. Plant Physiol, 1995, 109: 1179-1189.
[50] Nilsson O, Moritz T, Sundberg B, et al. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation[J]. Plant Physiol, 1996, 112(2): 493-502.
[51] Han K M, Dharmawardhana P, Arias R S, et al. Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus[J]. Plant Biotechnology Journal, 2010, 1-17.
[52] Eriksson M E, Israelsson M, Olsson O, et al. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length[J]. Nat Biotech, 2000, 18: 784-788.
[53] Busov V B, Meilan R, Pearce D W, et al. Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from Poplar that regulates tree stature[J]. Plant Physiol, 2003, 132: 1283-1291.
[54] Rottmann W H, Meilan R, Sheppard L A, et al. Diverse effects of overexpression of LEAFY and PTLF,a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis[J]. Plant J, 2000, 22: 235-245.
[55] Bohlenius H, Huang T, Charbonnel-Campaa L, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science, 2006, 312: 1040-1043.
[56] Shen L, ChenY, Su X, et al. Two FT orthologs from Populus simonii Carriere induce early flowering in Arabidopsis and poplar trees[J]. Plant Cell Tiss Organ Cult, 2012, 108: 371-379.
[57] Elorriaga E, Meilan R, Ma C, et al. A tapetal ablation transgene induces stable male sterility and slows field growth in Populus[J]. Tree Genetics & Genomes, 2014, 10: 1583-1593.
[58] Doty S L, James C A, Moore A L, et al. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees[J]. Proc Natl Acad Sci USA,2007, 104(43): 16816-16821.
[59] Lyyra S, Meagher RB, Kim T, et al. Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury[J]. Plant Biotechnol J, 2007, 5: 254-262.
[60] Ivanova L A, Ronzhina D A, Ivanov L A, et al. Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil[J]. Plant Biology, 2011, 13: 649-659.
[61] Cobbett C S. Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiol, 2000, 123: 825-833.
[62] 王关林, 方宏筠. 植物基因工程[M]. 北京:科学出版社,2002.
[63] Coleman G D, Ernst S G. In vitroshoot regeneration of Populus deltoides: effect of cytokinin and genotype[J]. Plant Cell Rep, 1989, 8: 459-462.
[64] Han K H, Meilan R, Ma C, et al. An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus)[J]. Plant Cell Rep, 2000, 19: 315-320.
[65] Leple J C, Brasileiro AC M, Michel M F, et al. Transgenic poplars:expression of chimeric genes using four different constructs[J]. Plant Cell Reports, 1992, 11: 137-141.
[66] Huetteman C A, Preece J E. Thidiazuron: A potent cytokinin for woody culture[J]. Plant Cell Tiss Organ Cult, 1993, 33(2): 105-119.
[67] Yevtushenko D P, Misra S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L.× P. maximowiczii A. Henry[J]. Plant Cell Rep, 2010, 29: 211-221.
[68] Howe G T, Goldfarb B, Strauss S H. Agrobacterium mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants[J]. Plant Cell Tiss Organ Cult, 1994,36:59-71.
[69] Godwin I, Todd G, Lioyd F B, et al. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species[J]. Plant Cell Reports, 1991, 9: 671-675.
[70] Wu H X, Sparks C, Amoah B, et al. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat[J]. Plant Cell Rep, 2003, 21: 659-668.
[71] 姚 叶, 唐 琪, 李江艳, 等. 杨树基因启动子的克隆及功能研究进展[J]. 山东林业科技,2012,(5):121-125.
[72] Han K H, Ma C P, Strauss S H. Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar[J]. Transgenic Research, 1997, 6: 415-420.
[73] Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31: 686-688.