[1] 门中华, 李生秀. 植物生物节律性研究进展[J]. 生物学杂志, 2009, 26(5):53-55.
[2] 徐小冬, 谢启光. 植物生物钟研究的历史回顾与最新进展[J]. 自然杂志, 2013, 35(2):118-126.
[3] Casal J J, Luccioni L G, Oliverio K A, et al. Light, phytochrome signalling and photomorphogenesis in Arabidopsis[J]. Photochemical & Photobiological Sciences, 2003, 2(6):625-636.
[4] Kim J Y, Song H R, Taylor B L, et al. Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY[J]. The EMBO Journal, 2003, 22:935-944.
[5] 陈晓, 李思远, 吴连成,等. 光周期影响植物花时的分子机制. 西北植物学报[J], 2006. 26(7):1490-1499.
[6] Dong M A, Farré E M, Thomashow M F. CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis[J]. Proceedings of the National Academy of Science, 2011, 108(17):7241-7246.
[7] 王璇, 曾凡锁, 詹亚光,等. 水曲柳节律基因LHY启动子的克隆和功能分析[J]. 植物生理学报, 2014,11:1675-1682.
[8] John M W. The Proteomics Protocols Handbook[M]. Humana Press 2005:571-607.
[9] Kyte J,Doolittle R F,A simple method for displaying the hydropathic character of a protein[J]. Journal of Molecular Biology, 1982, 157(06):105-132.
[10] Thomas N P, Soren B,Gunnar H. SignalP 4.0:discriminating signal peptides from transmembrane regions[J]. Nature Methods,2011, 785-786.
[11] Hofmann K, Stoffel W. TMbase-A database of membrane spanning proteins segments[M]. Biol Chem Hoppe-Seyler,1993, 374:166.
[12] Peitsch M C. Protein modeling by E-mail:from amino acid sequence to protein structure:a free one-hour service[J]. Nature Biotechnology, 1995.
[13] Skolnick J, Fetrow J S. From genes to protein structure and function:novel applications of computational approaches in the genomic era[J]. Trends in Biotechnology, 2000, 18(1):34-39.
[14] Sen T Z, Jernigan R L, Garnier J, et al. GOR V server for protein secondary structure prediction[J]. Bioinformatics, 2005, (21)2787-2788.
[15] Tamura K, Dudley J, Nei M. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0[M]. Molecular Biology and Evolution, 2007:1596-1599.
[16] Covington M F, Maloof J N, Straume M, et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development[J].Genome Biology, 2008, 9(8):R130.
[17] Kreps J A, Wu Y, Chang H S, et al. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress[J]. Plant Physiology, 2002, 130(4):2129-2141.
[18] Lai A G,Doherty C J, Mueller-Roeber B, et al. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses[J]. Proceedings of the National Academy of Sciences, 2012, 109(42):17129-17134.
[19] Legnaioli T, Cuevas J, Mas P. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought[J]. The EMBO Journal, 2009, 28(23):3745-3757.
[20] Sarah F, Thomashow M F. Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway[J]. Plant Cell, 2002, 14(8):1675-1690.
[21] Shuqing C, Ming Y, Shaotong J. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis.[J]. Plant Cell Reports, 2005, 24(11):683-690.
[22] Paltiel J, Amin R, Gover A, et al. Novel roles for GIGANTEA revealed under environmental conditions that modify its expression in Arabidopsis and Medicago truncatula[J]. Planta, 2006, 224(6):1255-1268.