[1] Vingarzan R. A review of surface ozone background levels and trends[J]. Atmospheric Environment, 2004, 38(21): 3431-3442.
[2] Bytnerowicz A, Omasa K, Paoletti E. Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective[J]. Environmental Pollution, 2007, 147(3): 438-445.
[3] Serengil Y, Augustaitis A, Bytnerowicz A, et al. Adaptation of forest ecosystems to air pollution and climate change: a global assessment on research priorities[J]. iForest-Biogeosciences and Forestry, 2011, 4(2): 44-48.
[4] Forest decline and ozone: a comparison of controlled chamber and field experiments[M]. Springer Science & Business Media, 1997.
[5] Ashmore M R. Assessing the future global impacts of ozone on vegetation[J]. Plant, Cell & Environment, 2005, 28(8): 949-964.
[6] Paoletti E, Ferrara A M, Calatayud V, et al. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example[J]. Environmental Pollution, 2009, 157(3): 865-870.
[7] Vingarzan R. A review of surface ozone background levels and trends[J]. Atmospheric Environment, 2004, 38(21): 3431-3442.
[8] Derwent R G, Simmonds P G, Manning A J, et al. Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland[J]. Atmospheric Environment, 2007, 41(39): 9091-9098.
[9] The Royal Society. Ground-level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications[J]. Science Policy, Report 15/08, 2008.
[10] IPCC. CLIMATECHANGE 2001-The Scientific Basis[M].Cambridge, UK and New York, USA: Cambridge University Press, 2002.
[11] 冯兆忠, 王效科, 郑启伟, 等. 油菜叶片气体交换对 O 3 浓度和熏蒸方式的响应[J]. 生态学报, 2013, 26(3): 823-829.
[12] Krupa S, McGrath M T, Andersen C P, et al. Ambient ozone and plant health[J]. Plant Disease, 2001, 85(1): 4-12.
[13] Grantz D A, Gunn S, VU H B. O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth[J]. Plant, Cell & Environment, 2006, 29(7): 1193-1209.
[14] Faoro F, Iriti M. Cell death behind invisible symptoms: early diagnosis of ozone injury[J]. Biologia plantarum, 2005, 49(4): 585-592.
[15] Fagnano M, Maggio A, Fumagalli I. Crops' responses to ozone in Mediterranean environments[J]. Environmental Pollution, 2009, 157(5): 1438-1444.
[16] Bermejo V, Gimeno B S, Sanz J, et al. Assessment of the ozone sensitivity of 22 native plant species from Mediterranean annual pastures based on visible injury[J]. Atmospheric Environment, 2003, 37(33): 4667-4677.
[17] Fuhrer J. Ozone risk for crops and pastures in present and future climates[J]. Naturwissenschaften, 2009, 96(2): 173-194.
[18] Ryang S Z, Woo S Y, Kwon S Y, et al. Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone[J]. Photosynthetica, 2009, 47(1): 19-25.
[19] Andersen C P. Source-sink balance and carbon allocation below ground in plants exposed to ozone[J]. New Phytologist, 2003, 157(2): 213-228.
[20] Watanabe M, Umemoto-Yamaguchi M, Koike T, et al. Growth and photosynthetic response of Fagus crenata seedlings to ozone and/or elevated carbon dioxide[J]. Landscape and Ecological Engineering, 2010, 6(2): 181-190.
[21] HUANG S, ZHAO T, JIN D, et al. Photosynthetic physio-response of urban Quercus mongolica leaves to surface elevated ozone concentration[J]. Liaoning Forestry Science and Technology, 2009, 5: 004.
[22] Zheng Y F, Hu C D, Wu R J, et al. Experiment with effects of increased surface ozone concentration upon winter wheat photosynthesis[J]. Acta Ecologica Sinica, 2010, 30(4): 847-855.
[23] Guidi L, Bongi G, Ciompi S, et al. In Vicia faba leaves photoinhibition from ozone fumigation in light precedes a decrease in quantum yield of functional PSII centres[J]. Journal of plant physiology, 1999, 154(2): 167-172.
[24] Zhang W W, Niu J F, Wang X K, et al. Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense(Hemsl.) Sarg, a native tree species of subtropical China[J]. Photosynthetica, 2011, 49(1): 29-36.
[25] Pleijel, H., H. Danielsson, J. Gelang, et al. Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.)[J]. Agriculture, ecosystems & environment, 1998. 70(1): 61-68.
[26] Clark, A.J., W. Landolt, J. Bucher, et al. Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index[J]. Environmental Pollution, 2000. 109(3): 501-507.
[27] Contran, N. and E. Paoletti. Visible foliar injury and physiological responses to ozone in Italian provenances of Fraxinus excelsior and F. ornus[J]. The Scientific World Journal, 2007. 7: 90-97.
[28] Desotgiu, R., F. Bussotti, F. Faoro, et al. Early events in Populus hybrid and Fagus sylvatica leaves exposed to ozone[J]. The Scientific World Journal, 2010. 10: 512-527.
[29] Calatayud, A. and E. Barreno. Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation[J]. Plant Physiology and Biochemistry, 2004. 42(6): 549-555.
[30] Calatayud, V., J. Cerveró, E. Calvo, et al. Responses of evergreen and deciduous Quercus species to enhanced ozone levels[J]. Environmental Pollution, 2011. 159(1): 55-63.
[31] Pleijel, H. Reduced ozone by air filtration consistently improved grain yield in wheat[J]. Environmental Pollution, 2011. 159(4): 897-902.
[32] Innes, J., J. Skelly, and M. Schaub. Ozone and Braodleaved Species. A Guide to the Identification of Ozone-induced Foliar Injury[J]. Ozon, Laubholz-und Krautpflanzen. Ein Führer zum Bestimmen von Ozonsymptomen. Eidgenössische Forschungsanstalt WSL, Birmensdorf Paul Haupt Verlag, Bern, Stuttgart, Wien, 2001.
[33] Wittig V E, Ainsworth E A, Naidu S L, et al. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis[J]. Global Change Biology, 2009, 15(2): 396-424.
[34] 张巍巍, 牛俊峰, 王效科, 等. 大气臭氧浓度增加对湿地松幼苗的影响[J]. 环境科学, 2011, 32(6):1710-1716.
[35] 彭斌, 赖上坤, 李潘林, 等. 开放式空气中臭氧浓度升高对超级稻Ⅱ优084生长和产量的影响[J].农业环境科学报, 2014, 02:217-223.
[36] 付伟, 高江艳, 徐胜, 等. 高浓度臭氧对城市白桦和银中杨光合作用的影响[J]. 生态学杂志, 2014, 12: 3184-3190.
[37] Ismail, I., J. Basahi, and I. Hassan. Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt[J]. Science of the total environment, 2014. 497: 585-593.
[38] 李秋静, 卢广超, 薛立, 等. 臭氧与干旱交叉胁迫对3树种幼苗光合生理的影响[J]. 广东林业科技, 2014, 02: 45-52.
[39] Paoletti E, Grulke N E. Does living in elevated CO 2 ameliorate tree response to ozone? A review on stomatal responses[J]. Environmental Pollution, 2005, 137(3): 483-493.
[40] Pääkkönen E, Vahala J, Pohjola M, et al. Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress[J]. Plant, Cell & Environment, 1998, 21(7): 671-684.
[41] Vingarzan, R. A review of surface ozone background levels and trends[J]. Atmospheric Environment, 2004. 38(21): 3431-3442.
[42] Zhang W, Feng Z, Wang X, et al. Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings[J]. Environmental Pollution, 2014, 184: 676-681.
[43] Wittig V E, Ainsworth E A, Long S P. To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? Ameta-analytic review of the last 3 decades of experiments[J]. Plant, cell & environment, 2007, 30(9): 1150-1162.
[44] 张薇薇. 近地层O3浓度升高对我国亚热带典型树种的影响. 北京: 中国科学院生态环境研究中心, 2011.