[1] Yuan Z, Chen H. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses[J]. Critical Reviews in Plant Sciences, 2010, 29(4): 204-221. doi: 10.1080/07352689.2010.483579
[2] 陈曦, 张乃莉, 周晓梅, 等. 细根分解研究进展及存在问题[J]. 吉林师范大学学报: 自然科学版, 2012, (2): 36-40.
[3] 林成芳, 杨玉盛, 陈光水, 等. 杉木人工林细根分解和养分释放及化学组成变化[J]. 亚热带资源与环境学报, 2008, 3(1): 15-23. doi: 10.3969/j.issn.1673-7105.2008.01.003
[4] 王存国, 韩士杰, 周玉梅, 等. 长白山阔叶红松林群落的细根现存量及养分内循环[J]. 林业科学, 2012, 48(3): 0148-0153.
[5] 王瑞丽, 程瑞梅, 肖文发, 等. 三峡库区马尾松人工林细根生产和周转[J]. 应用生态学报, 2012, 23(9): 2346-2352.
[6] 肖文发, 雷静品. 三峡库区森林植被恢复与可持续经营研究[J]. 长江流域资源与环境, 2004, 13(2): 138-144. doi: 10.3969/j.issn.1004-8227.2004.02.008
[7] 林成芳. 中亚热带森林细根分解动态及影响因素[D]. 福建: 福建师范大学, 2008.
[8] 罗达. 南亚热带格木、马尾松幼龄纯林及其混交林碳氮特征研究[D]. 北京: 中国林业科学研究院, 2014.
[9] 王卫霞. 南亚热带不同树种人工林生态系统碳氮特征研究[D]. 北京: 中国林业科学研究院, 2013.
[10] 葛晓改, 肖文发, 曾立雄, 等. 三峡库区不同林龄马尾松土壤养分与酶活性的关系[J]. 应用生态学报, 2012, (02): 445-451.
[11] Berg B, McClaugherty C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration[J]. Berlin: Springer, 2003.
[12] Lin C F, Yang Y S, Guo J F, et al. Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions[J]. Plant Soil, 2010, 338: 311-327.
[13] 许玉庆, 项文化, 曾叶霖, 等. 中国森林生态系统细根分解格局及调控因子研究进展[J]. 广西林业科学, 2015, 44(2): 149-155. doi: 10.3969/j.issn.1006-1126.2015.02.012
[14] 王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展[J]. 应用生态学报, 2013, 11: 3300-3310.
[15] Silver W L, Myia R K. Global patterns in root decomposition: comparisons of climate and litter quality effects[J]. Oecologia, 2001, 129(3): 407-419. doi: 10.1007/s004420100740
[16] Hishi T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions[J]. Journal of Forestry Research, 2007, 12(2): 126-133. doi: 10.1007/s10310-006-0260-5
[17] 勒贝贝, 国庆喜. 蒙古栎、白桦根系分解及养分动态[J]. 生态学报, 2013, (8): 2416-2424.
[18] Fan P P, Guo D L. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil[J]. Oecologia, 2010, 163(2): 509-515. doi: 10.1007/s00442-009-1541-4
[19] 刘利芳, 徐程杨. 影响森林细根分解的机理研究进展[J]. 山东林业科技, 2012, 3: 0097-0105.
[20] Sun T, Mao Z J, Han Y Y. Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in for temperate tree species[J]. Plant and Soil, 2013, 372(1): 445-458.
[21] Chen H, Harmon M E, Grifiths R E. Decomposition and nitrogen relaese from decomposing woody roots in coniferous forests of the Pacific Northwest[J]. Can J For Res, 2001, 31: 246-260. doi: 10.1139/x00-167
[22] Langley J A, Hungate B A. Mycorrhizal controls on below-ground litter quality[J]. Ecology, 2003, 84: 2302-2312. doi: 10.1890/02-0282
[23] Langley J A, Chapman S K, Hungate B A. Ectomycorrhizal colonization slows root decomposition: the postmortem fungl legacy[J]. Ecology Letters, 2006, 9: 955-959. doi: 10.1111/j.1461-0248.2006.00948.x
[24] Koide R T, Malcolm G M. N concentration controls decomposition rates of different strains of ectomycorrhizal fungi[J]. Fungal Ecology, 2009, 2: 197-202. doi: 10.1016/j.funeco.2009.06.001
[25] 王存国, 陈正侠, 马承恩, 等. 细根异速分解的3各可能影响途径[J]. 北京林业大学学报, 2016, 4(38): 123-128.
[26] Wang W, Zhang X Y, Tao N, et al. Effects of litter types, microsite and root diameters on litter decomposition in Pinus silvestris plantations of north China[J]. Plant and Soil, 2014, 374(1-2): 677-688. doi: 10.1007/s11104-013-1902-y
[27] Hobbie S E, Vitousek P M. Nutrient limitation of decomposition in Hawaiian forests[J]. Ecology, 2000, 81: 1867-1877. doi: 10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2
[28] 王瑾, 黄建辉. 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较[J]. 植物生态学报, 2001, 25(3): 375-380. doi: 10.3321/j.issn:1005-264X.2001.03.019
[29] Chen H, Harmon M E, Sexton J, et al. Fine-root decomposition and N dynamics in coniferous forests of the Pacific Northwest, USA[J]. Canadian Journal of Forest Research, 2002, 32: 320-331. doi: 10.1139/x01-202
[30] Guo L B, Halliday M J, Gifford R M. Fine root decomposition under grass and pine seedlings in controlled environmental conditions[J]. Applied Soil Ecology, 2006, 33(1): 22-29. doi: 10.1016/j.apsoil.2005.09.004
[31] 张秀娟, 吴楚, 梅莉, 等. 水曲柳和落叶松人工林根系分解与养分释放[J]. 应用生态学报, 2006, 17(8): 1370-1376. doi: 10.3321/j.issn:1001-9332.2006.08.003
[32] 李吉枚, 张毓涛, 李建贵, 等. 模拟氮沉降对天山云杉细根分解及其养分释放的影响[J]. 生态环境学报, 2015, 35(1): 0182-0188.
[33] Ostertag R, Hobbie S E. Early stages of root and leaf decomposition in Hawaiian forest effect of nutrient availability[J]. Oecologia, 1999, 121: 564-573. doi: 10.1007/s004420050963
[34] Lambers H, Brundrett M C, Raven J A, et al. Plant mineral nutrition in ancient landscapes: high plant species diversityon infertile soils is linked to functional diversity for nutritional strategies[J]. Plant and Soil, 2011, 348: 7-27. doi: 10.1007/s11104-011-0977-6
[35] 翟明普, 蒋三乃, 贾黎明. 杨树刺槐混交林细根养分动态研究[J], 林业科学, 2004, 40(4): 0046-0051.
[36] Yang Y S, Chen G S, Guo J F, et al. Decomposition dynamic of fine roots in a mixed forest of Cunninggamia laceolate and Tsoongiodendron odorum in midsubtropics[J]. Annals of Forest Science, 2004, 61: 65-72. doi: 10.1051/forest:2003085
[37] 陈灵芝, 黄建辉, 严昌荣. 中国森林生态系统养分循环[M]. 北京: 中国气象出版社, 1997.