[1] Mallants D, Mohanty B P, Vervoort A, et al. Spatial analysis of saturated hydraulic conductivity in a soil with macropores[J]. Soil Technology, 2013, 10(2): 115-131.
[2] 林代杰, 郑子成, 张锡洲, 等. 不同土地利用方式下土壤入渗特征及其影响因素[J]. 水土保持学报, 2010, 24(1): 33-36.
[3] Czarnes S, Hallett P D, Bengough A G, et al. Root and microbialderived mucilages affect soil structure and water transport[J]. European Journal of Soil Science, 2000, 51(3): 435-443. doi: 10.1046/j.1365-2389.2000.00327.x
[4] 王芝芳, 杨亚川, 赵作善, 等. 土壤-草本植被根系复合体抗水蚀能力的土壤力学模型[J]. 中国农业大学学报, 1996, 1(2): 39-45
[5] 孔祥飞, 赵雨森, 辛颖, 等. 黑龙江省东部山地天然次生林土壤水分的研究[J]. 森林工程, 2009, 25(04): 6-9. doi: 10.3969/j.issn.1001-005X.2009.04.002
[6] 孔亮, 蒙宽宏, 陈宇, 等. 黑龙江省东部山地灌木林土壤水分动态变化[J]. 东北林业大学学报, 2005, 33(05): 44-46. doi: 10.3969/j.issn.1000-5382.2005.05.016
[7] Flury M, Flühler H. Brilliant Blue FCF as a Dye Tracer for Solute Transport Studies-A Toxicological Overview[J]. Journal of Environmental Quality, 1994, 23(5): 1108-1112.
[8] Morris C, Mooney S J, Young S D. Sorption and desorption characteristics of the dye tracer, Brilliant Blue FCF, in sandy and clay soils[J]. Geoderma, 2008, 146(146): 434-438.
[9] Flury M, Flühler H. Tracer Characteristics of Brilliant Blue FCF[J]. Soil Sci Soc Am J, 1995, 59(1): 22-27. doi: 10.2136/sssaj1995.03615995005900010003x
[10] Mooney S J, Morris C. A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray Computed Tomography[J]. Catena, 2008, 73(2): 204-211. doi: 10.1016/j.catena.2007.09.003
[11] Fransen B, Kroon H D, Berendse F. Root Morphological Plasticity and Nutrient Acquisition of Perennial Grass Species from Habitats of Different Nutrient Availability[J]. Oecologia, 1998, 115(3): 351-358. doi: 10.1007/s004420050527
[12] 田香姣, 程金花, 杜士才, 等. 2种土地利用方式下的优先流特征[J]. 水土保持学报, 2014, 28(03): 37-41.
[13] 黄林, 王峰, 周立江, 等. 不同森林类型根系分布与土壤性质的关系[J]. 生态学报, 2012, 32(19): 6110-6119.
[14] Hagedorn F, Bundt M. The age of preferential flow paths[J]. Geoderma, 2002, 108(1): 119-132.
[15] 蒋小金, 王恩姮, 陈祥伟, 等. 典型黑土耕地土壤优先流环绕特征[J]. 应用生态学报, 2010, 21(12): 3127-3132.
[16] 王国梁, 刘国彬. 黄土丘陵区长芒草群落对土壤水分入渗的影响[J]. 水土保持学报, 2009, 23(3): 227-231. doi: 10.3321/j.issn:1009-2242.2009.03.049
[17] 邵明安, 杨文治, 李玉山. 植物根系吸收土壤水分的数学模型[J]. 土壤学报, 1987, 24(4): 295-305.
[18] Volkmar K M. A comparison of minirhizotron techniques for estimating root length density in soils of different bulk densities[J]. Plant & Soil, 1993, 157(2): 239-245.
[19] Steele S J, Gower S T, Vogel J G, et al. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. [J]. Tree Physiology, 1997, 17(8-9): 577-587. doi: 10.1093/treephys/17.8-9.577
[20] Wells C E, Glenn D M, Eissenstat D M. Changes in the risk of fine-root mortality with age: a case study in peach, Prunus persica (Rosaceae). [J]. American Journal of Botany, 2002, 89(1): 79-87. doi: 10.3732/ajb.89.1.79
[21] Zhang X Q. Fine-root Biomass, Production and Turnover of Trees in Relations to Environmental Conditions[J]. Forest Research, Jan 2001, 14(5): 566-573.
[22] Cannavo P, Michel J C. Peat particle size effects on spatial root distribution, and changes on hydraulic and aeration properties[J]. Scientia Horticulturae, 2013, 151(2): 11-21.
[23] Dušek J, Vogel T, Lichner L, et al. Simulated cadmium transport in macroporous soil during heavy rainstorm using dual-permeability approach[J]. Biologia, 2006, 61(19): S251-S254.
[24] Xiamen, Xing X. Fine root biomass and production of Castanopsis eyrei forests in Wuyi Mountains[J]. Chinese Journal of Applied Ecology, 1998, 9(4): 337-340.
[25] Liao L, Chen C, Sinica A, et al. Turnover of fine roots in pure and mixed Cunninghamia lanceolata and Michelia macclurei forests[J]. Chinese Journal of Applied Ecology, 1995, 6(1): 7-10.
[26] 毛伶俐. 生态护坡中植被根系的力学分析[D]. 武汉理工大学, 2007.
[27] 张英虎, 牛健植, 朱蔚利, 等. 森林生态系统林木根系对优先流的影响[J]. 生态学报, 2015, 35(6): 1788-1797.
[28] Angers D A, Caron J. Plant-induced Changes in Soil Structure: Processes and Feedbacks[J]. Biogeochemistry, 1998, 42(1): 55-72.
[29] Bogner C, Wolf B, Schlather M, et al. Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics[J]. Eur J Soil Sci, 2008, 59(1): 103-113.
[30] Aubertin G M. Nature and extent of macropores in forest soils and their influence on subsurface water movement[A]. USDA. FOREST SERVICE RESEARCH PAPER NE. 1971.
[31] Bengough A G. Water Dynamics of the Root Zone: Rhizosphere Biophysics and Its Control on Soil Hydrology[J]. Vadose Zone Journal, 2012, 11(2): 460-460.
[32] Everts C J, Kanwar R S, Alexander E C, et al. Comparison of Tracer Mobilities under Laboratory and Field Conditions[J]. Journal of Environmental Quality, 1989, 18(4): 491-498.
[33] Hagedorn F, Bundt M. The age of preferential flow paths[J]. Geoderma, 2002, 108(1): 119-132.
[34] Ghestem M, Sidle R C, Stokes A. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability[J]. Bioscience, 2001, 61(11): 869-879.
[35] 董宾芳. 黄土丘陵区林地植物根系与土壤优势流关系研究[D]. 昆明: 西南大学, 2007.
[36] 陈晓冰, 张洪江, 程金花, 等. 基于染色图像变异性分析的优先流程度定量评价[J]. 农业机械学报, 2015, 46(5): 93-100.
[37] Bogner C, Borken W, Huwe B. Impact of preferential flow on soil chemistry of a podzol[J]. Geoderma, 2012, 175(3): 37-46.
[38] 刘道平, 陈三雄, 张金池, 等. 浙江安吉主要林地类型土壤渗透性[J]. 应用生态学报, 2007, 18(3): 493-498. doi: 10.3321/j.issn:1001-9332.2007.03.005