[1] 张会敏, 袁艺, 焦慧, 等. 相思谷尾矿8种定居植物对重金属吸收与富集特性[J]. 生态环境学报, 2015, 24(5): 886-891.
[2] Bogdanović T, Ujević I, Sedak M, et al. As, Cd, Hg and Pb in four edible shellfish species from breeding and harvesting areas along the eastern Adriatic Coast, Croatia[J]. Food Chemistry, 2014, 146(1): 197-203.
[3] 沈章军, 王友保, 王广林, 等. 铜陵铜尾矿凤丹种植基地重金属污染初探[J]. 应用生态学报, 2005, 16(4): 673-677. doi: 10.3321/j.issn:1001-9332.2005.04.017
[4] Rockwood K, Mogilner A, Mitnitski A. Changes with age in the distribution of a frailty index[J]. Mechanisms of ageing and development, 2004, 125(7): 517-519. doi: 10.1016/j.mad.2004.05.003
[5] Günthardt-Goerg M. S. and Vollenweider P. Cellular injury, heavy metal uptake and growth of poplar, willow and spruce influenced by heavy metals and soil acidity[J]. Risk assessment and sustainable land management using plants in trace element-contaminated soils. COST Action, 2003, 837: 165-171.
[6] Gu J, Qi L, Jiang W, et al. Cadmium accumulation and its effects on growth and gas exchange in four Populus cultivars[J]. Acta Biologica Cracoviensia, 2007, 49(2): 7-14.
[7] Naumann B, Eberius M, Appenroth K J. Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. [J]. Journal of Plant Physiology, 2007, 164(12): 1656-1664. doi: 10.1016/j.jplph.2006.10.011
[8] Pajević S, Borišev M, Nikolić N, et al. Phytoremediation capacity of poplar (Populus spp. ) and willow (Salix spp. ) clonesin relation to photosynthesis[J]. Archives of Biological Sciences, 2009, 61(2): 239-247. doi: 10.2298/ABS0902239P
[9] Parmar P, Kumari N, Sharma V. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress[J]. Botanical Studies, 2013, 54(1): 1-6. doi: 10.1186/1999-3110-54-1
[10] 徐爱春, 陈益泰, 王树凤, 等. 柳树对Cd吸收、积累和耐性的初步研究[J]. 环境科学研究, 2006, 19(5): 96-100. doi: 10.3321/j.issn:1001-6929.2006.05.018
[11] 杨卫东, 陈益泰, 王树凤. 镉胁迫对旱柳光合作用和内肽酶变化的影响[J]. 植物研究, 2009, 29(4): 428-432.
[12] 周晓星. 柳属植物对重金属镉胁迫的生长与生理响应[D]. 北京: 中国林业科学研究院, 2012.
[13] 张春燕, 王瑞刚, 范稚莲, 等. 杨树和柳树富集Cd、Zn、Pb的品种差异性[J]. 农业环境科学学报, 2013, 32(3): 530-538.
[14] 施翔, 陈益泰, 王树凤, 等. 旱柳无性系在富营养化水体中的生长及去除氮磷能力[J]. 林业科学研究, 2015, 28(3): 317-324. doi: 10.3969/j.issn.1001-1498.2015.03.003
[15] 王树凤, 施翔, 田生科, 等. 杞柳不同品种对铅的积累、耐性及叶片元素原位微区分布特征[J]. 林业科学, 2016, 52(5): 71-80.
[16] 施翔, 陈益泰, 吴天林, 等. 7个柳树无性系在Cu/Zn污染土壤中的生长及对Cu/Zn的吸收[J]. 中国环境科学, 2010, 30(12): 1683-1689.
[17] 廖启林, 刘聪, 华明, 等. 栽种柳树修复镉污染土壤的研究[J]. 地质学刊, 2015, 39(4): 665-672. doi: 10.3969/j.issn.1674-3636.2015.04.665
[18] 王贞红, 张文辉, 何景峰, 等. 瑞典能源柳无性系保护酶活性对水分胁迫的响应[J]. 西北林学院学报, 2008, 23(2): 21-23.
[19] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[20] 杨卫东, 陈益泰. 不同品种杞柳对高锌胁迫的忍耐与积累研究[J]. 中国生态农业学报, 2009, 17(6): 1182-1186.
[21] Bonser A M, Lynch J, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris[J]. New Phytologist, 1996, 132(2): 281-288. doi: 10.1111/j.1469-8137.1996.tb01847.x
[22] 蔺晓晖, 段爱国, 何彩云, 等. 镉胁迫对107杨幼苗光合作用和干物质分配的影响[J]. 林业科学研究, 2012, 25(5): 651-656. doi: 10.3969/j.issn.1001-1498.2012.05.018
[23] 秦天才, 阮捷, 王腊娇. 镉对植物光合作用的影响[J]. 环境科学与技术, 2000(S), 90(5): 33-35.
[24] Brunner I, Luster J, Günthardtgoerg M S, et al. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. [J]. Environmental Pollution, 2008, 152(3): 559-568. doi: 10.1016/j.envpol.2007.07.006
[25] 郭观林, 魏树和, 周启星, 等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L. )[J]. 科学通报, 2004, 49(24): 2568-2573. doi: 10.3321/j.issn:0023-074X.2004.24.013
[26] MacFarlane G R. Leaf biochemical parameters in Avicennia marina (Forsk. ) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems[J]. Mar Pollut Bull, 2002, 44(3): 244-256. doi: 10.1016/S0025-326X(01)00255-7
[27] 刘治昆, 陈彩虹, 陈光才, 等. Cu2+胁迫对2种速生柳幼苗生长及生理特性的影响[J]. 西北植物学报, 2011, 31(6): 1195-1202.
[28] Yang W D, Wang Y Y, Zhao F L, et al. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction. [J]. Journal of Zhejiang University-SCIENCE B, 2014, 15(9): 788-800. doi: 10.1631/jzus.B1400029
[29] Keller C, Hammer D, Kayser A, et al. Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field[J]. Plant and Soil, 2003, 249(1): 67-81. doi: 10.1023/A:1022590609042
[30] He J Y, Zhu C, Ren Y F, et al. Root morphology and cadmium uptake kinetics of the cadmium-sensitive rice mutant[J]. Biologia Plantarum, 2007, 51(4): 791-794. doi: 10.1007/s10535-007-0162-1
[31] Manciulea A, Ramsey M H. Effect of scale of Cd heterogeneity and timing of exposure on the Cd uptake and shoot biomass, of plants with a contrasting root morphology[J]. Science of the total environment, 2006, 367(2): 958-967.
[32] Naumann B, Busch A J, Ostendorf E, et al. Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. [J]. Proteomics, 2007, 7(21): 3964-3979. doi: 10.1002/pmic.200700407
[33] 刘春生, 史衍玺, 马丽, 等. 过量铜对苹果树生长及代谢的影响[J]. 植物营养与肥料学报, 2000, 6(4): 451-456. doi: 10.3321/j.issn:1008-505X.2000.04.014