[1] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(1): 651-681. doi: 10.1146/annurev.arplant.59.032607.092911
[2] Ci L J, Yang X H. Desertification and its control in China[M]. Beijing: Higher Education Press, 2010.
[3] Akhtar S, Wahid A, Akram M, et al. Some growth, photosynthetic and anatomical attributes of sugarcane genotypes under NaCl salinity[J]. International Journal of Agriculture and Biology, 2001, 4(3): 439-443.
[4] Djanaguiraman M, Sheeba J A, Shanker A K, et al. Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment[J]. Plant and Soil, 2006, 284(1-2): 363-373. doi: 10.1007/s11104-006-0043-y
[5] Li Y L, Su X H, Zhang B Y, et al. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance[J]. Tree Physiology, 2009, 29(2): 273-279.
[6] 中科院中国植物志编辑委员会. 中国植物志[M]. 1979, 25(2): 115-135.
[7] 于玮玮, 阎国荣. 沙枣的资源及研究现状[J]. 天津农学院学报, 2009, 16(2): 46-50. doi: 10.3969/j.issn.1008-5394.2009.02.014
[8] 刘正祥. 沙枣对氯化钠和硫酸钠胁迫差异性响应的生理机制[D]. 北京: 中国林业科学研究院, 2013, 17.
[9] 刘宝玉, 张文辉, 刘新成, 等. 沙枣和柠条种子萌发期耐盐性研究[J]. 植物研究, 2007, 27(6): 721-728. doi: 10.3969/j.issn.1673-5102.2007.06.014
[10] 公勤, 齐曼·尤努斯, 艾力江·买买提. NaCl胁迫对3种胡颓子属植物幼苗体内物质积累及水分含量的影响[J]. 新疆农业大学学报, 2008, 31(3): 46-50. doi: 10.3969/j.issn.1007-8614.2008.03.012
[11] 张桂霞, 李树玲. 盐胁迫对两种沙枣抗氧化酶活性的影响[J]. 北方园艺, 2011, 10: 46-49.
[12] 黄俊华, 买买提江, 杨昌友, 等. 沙枣(Elaeagnus angustifolia L. )研究现状与展望[J]. 中国野生植物资源, 2005, 24(3): 26-33. doi: 10.3969/j.issn.1006-9690.2005.03.008
[13] 辛艳伟. 沙枣的开发和利用[J]. 安徽农业科学, 2007, 35(2): 399-400, 402. doi: 10.3969/j.issn.0517-6611.2007.02.036
[14] 刘正祥, 张华新, 杨秀艳, 等. NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性[J]. 生态学报, 2014, 34(2): 326-336.
[15] 杨升, 刘涛, 张华新, 等. 盐胁迫下沙枣幼苗的生长表现和生理特性[J]. 福建林学院学报, 2014, 34(1): 64-70. doi: 10.3969/j.issn.1001-389X.2014.01.013
[16] 丁水林, 赵延茂, 乔来秋. 黄河三角洲地区沙枣引种初报[J]. 山东林业科技, 1999(4): 10-11.
[17] 陶晶, 陈士刚, 李青梅, 等. 耐寒型抗盐碱树种银莓、沙枣引种及应用[J]. 防护林科技, 2007(5): 94-96. doi: 10.3969/j.issn.1005-5215.2007.05.043
[18] 陈士刚, 陶晶, 秦彩云, 等. 沙枣在吉林苏打盐碱土区的适应性研究[J]. 吉林林业科技, 2014, 43(1): 6-10. doi: 10.3969/j.issn.1005-7129.2014.01.002
[19] 卢兴霞, 周俊, 杨静慧, 等. 两种林木栽植对滨海重盐碱地化学特性的影响[J]. 西南师范大学学报: 自然科学版, 2014, 39(9): 37-43.
[20] 于雷, 郑景明, 潘文利, 等. 滨海盐碱地防护林树种固氮特性研究[J]. 辽宁林业科技, 1998(2): 17-19, 50.
[21] 姚凡云, 朱彪, 杜恩在. 15N自然丰度法在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2012, 36(4): 346-352.
[22] Nadelhoffer K J, Shaver G, Fry B, et al. 15N natural abundances and N use by tundra plants[J]. Oecologia, 1996, 107(3): 386-394. doi: 10.1007/BF00328456
[23] Robinson D. δ15N as an integrator of the nitrogen cycle[J]. Trends in Ecology & Evolution, 2001, 16(3): 153-162.
[24] Kahmen A, Wanek W, Buchmann N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient[J]. Oecologia, 2008, 156(4): 861-870. doi: 10.1007/s00442-008-1028-8
[25] Templer P H, Arthur M A, Lovett G M, et al. Plant and soil natural abundance δ15N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems[J]. Oecologia, 2007, 153(2): 399-406. doi: 10.1007/s00442-007-0746-7
[26] 黄东风, 翁伯琦, 罗涛. 豆科植物固氮能力的主要测定方法比较[J]. 江西农业大学学报, 2003, 25(S1): l7-20.
[27] 陈朝勋, 席琳乔, 姚拓, 等. 生物固氮测定方法研究进展[J]. 草原与草坪, 2005(2): 21-26.
[28] Boddey R. M, Peoples M. B, Palmer B, et al. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials[J]. Nutrient Cycling in Agroecosystems, 2000, 57(3): 235-270. doi: 10.1023/A:1009890514844
[29] Hoagland D R, Arnon D I. The water culture method for growing plants without soil[J]. California Agriculture Experimental Station Circular, 1950, 347(5406): 357-359.
[30] Sheng O, Song S W, Chen Y J, et al. Effects of exogenous B supply on growth, B accumulation and distribution of two navel orange cultivars[J]. Trees, 2009, 23(1): 59-68. doi: 10.1007/s00468-008-0254-3
[31] Bolger T P, Pate J S, Unkovich M J, et al. Estimates of seasonal fixation of annual subterranean clover based pastures using the 15N natural abundance technique[J]. Plant Soil, 1995, 175(1): 57-66. doi: 10.1007/BF02413010
[32] Unkovich M, Herridge D, Peoples M, et al. Measuring plant-associated nitrogen fixation in agricultural systems[J]. ACIAR. (The Australian Centre for International Agricultural Research), 2008, 136: 258.
[33] 杨子文. 应用15N自然丰度技术量化陇东苜蓿生物固氮的研究[D]. 兰州: 兰州大学, 2010, 43.
[34] Gathumbi S. M, Cadisch G, Giller K. E. 15N natural abundance as a tool for assessing N2-fixation of herbaceous, shrub and tree legumes in improved fallows[J]. Soil Biology & Biochemistry, 2002, 34(8): 1059-1071.
[35] Andrews M, James E K, Sprent J I, et al. Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance[J]. Plant Ecology & Diversity, 2011, 4(2-3): 131-140.