[1] 齐力旺. 华北落叶松体细胞胚胎发生与遗传转化系统建立的研究[D], 2000, 中国林业科学研究院.
[2] Jain S M, Gupta P K. Protocol for Somatic Embryogenesis in Woody Plants[J]. Forestry Sciences, 2005(77): 11-24.
[3] Li S, Li W, Han S, et al. Stage-specific regulation of four HD-ZIP Ⅲ transcription factors during polar pattern formation in Larix leptolepis somatic embryos[J]. Gene, 2013, 522(2): 177-183. doi: 10.1016/j.gene.2013.03.117
[4] 齐力旺, 韩一凡, 韩素英, 等. 麦芽糖、NAA及ABA对华北落叶松体细胞胚成熟及生根的影响[J]. 林业科学, 2004, 40(1): 52-57.
[5] 吕守芳, 张守攻, 齐力旺, 等. 落叶松体细胞胚胎发生研究进展. 林业科学研究[J]. 2004, 17(3): 392-398.
[6] Aderkas P V, Klimaszewska K, Bonga J M. Diploid and haploid embryogenesis in Larix leptolepis, L. decidua, and their reciprocal hybrids[J]. Canadian Journal of Forest Research, 1990, 1(20): 9-14.
[7] Teyssier C, Grondin C, Bonhomme L, et al. Increased gelling agent concentration promotes somatic embryo maturation in hybrid larch (Larix x eurolepsis): a 2-DE proteomic analysis[J]. Physiol Plant, 2011, 141(2): 152-65. doi: 10.1111/j.1399-3054.2010.01423.x
[8] Belousova A C, Tret'Iakova I N. Patterns of somatic embryo formation in Siberian larch: embryological aspects[J]. Ontogenez, 2008, 39(2): 106-115.
[9] Li W, Zhang S, Han S, et al. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi(Lamb. ) Carr[J]. Plant Cell, Tissue and Organ Culture, 2013, 113(1): 131-136. doi: 10.1007/s11240-012-0233-7
[10] Zhang Y, Zhang S, Han S, et al. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis)[J]. Plant Cell Rep, 2012, 31(9): 1637-1657. doi: 10.1007/s00299-012-1277-1
[11] Zhang S, Zhou J, Han S, et al. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis[J]. Biochem Biophys Res Commun, 2010, 398(3): 355-60. doi: 10.1016/j.bbrc.2010.06.056
[12] Zhang L, Li W, Xu H, et al. Cloning and characterization of four differentially expressed cDNAs encoding NFYA homologs involved in responses to ABA during somatic embryogenesis in Japanese larch (Larix leptolepis). Plant Cell, Tissue and Organ Culture, 2014, 117(2): 293-304. doi: 10.1007/s11240-014-0440-5
[13] Cairney J, Xu N, Pullman G S. Natural and somatic embryo development in loblolly pine[J]. Applied Biochemistry and Biotechnology, 1999. 77(1-3): 5-17. doi: 10.1385/ABAB:77:1-3:5
[14] Yong W K, Yang Y, Noh E R, et al. Somatic embryogenesis and plant regeneration from immature zygotic embryos of Japanese larch (Larix leptolepis)[J]. Plant Cell, Tissue and Organ Culture, 1998. 55(2): 95-101. doi: 10.1023/A:1006120302512
[15] Yong W K, Moon H K. Enhancement of somatic embryogenesis and plant regeneration in Japanese larch (Larix leptolepis)[J]. Plant Cell, Tissue and Organ Culture, 2007. 88(3): 241-245. doi: 10.1007/s11240-007-9202-y
[16] Klimaszewska K, Hargreaves C, Lelu-Walter M A, et al. Advances in Conifer Somatic Embryogenesis Since Year 2000[J]. Methods Mol Biol, 2016. 1359: 131-66.
[17] Oh E, Yamaguchi S, Kamiya Y, et al. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis[J]. Plant J, 2006. 47(1): 124-39. doi: 10.1111/j.1365-313X.2006.02773.x
[18] Tsavkelova E A, Cherdyntseva T A, Klimova S Y, et al. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin[J]. Arch Microbiol, 2007. 188(6): 655-64. doi: 10.1007/s00203-007-0286-x
[19] Li L, Qu R. In vitro somatic embryogenesis in turf-type bermudagrass: roles of abscisic acid and gibberellic acid, and occurrence of secondary somatic embryogenesis[J]. Plant Breeding, 2002. 121(2): 155-158. doi: 10.1046/j.1439-0523.2002.00684.x
[20] López-Pérez A J, Carreño J, Dabauza M. Somatic embryo germination and plant regeneration of three grapevine cvs: Effect of IAA, GA3 and embryo morphology[J]. VITIS-Journal of Grapevine Research, 2015. 45(3): 141-143.
[21] 徐云远, 种康. 植物干细胞决定基因WUS的研究进展. 植物生理与分子生物学学报[J], 2005(05): 461-468.
[22] Vernoux T, Benfey P N. Signals that regulate stem cell activity during plant development[J]. Curr Opin Genet Dev, 2005. 15(4): 388-394. doi: 10.1016/j.gde.2005.06.008
[23] Byrne M E, Kidner C A, Martienssen R A. Plant stem cells: divergent pathways and common themes in shoots and roots[J]. Curr Opin Genet Dev, 2003. 13(5): 551-557. doi: 10.1016/j.gde.2003.08.008
[24] Shani E, Yanai O, Ori N. The role of hormones in shoot apical meristem function[J]. Curr Opin Plant Biol, 2006. 9(5): 484-489. doi: 10.1016/j.pbi.2006.07.008
[25] Liu B, Wang L, Zhang J, et al. WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation[J]. BMC Genomics, 2014. 15(1): 1-14. doi: 10.1186/1471-2164-15-1
[26] Aida M, Beis D, Heidstra R, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche[J]. Cell, 2004. 119(1): 109-120. doi: 10.1016/j.cell.2004.09.018