[1] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual Review of Plant Physiology, 1980, 31(1): 149-190. doi: 10.1146/annurev.pp.31.060180.001053
[2] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59: 651-681. doi: 10.1146/annurev.arplant.59.032607.092911
[3] Zhu J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71. doi: 10.1016/S1360-1385(00)01838-0
[4] Wang R G, Chen S L, Zhou X Y, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress[J]. Tree Physiology, 2008, 28(6): 947-957. doi: 10.1093/treephys/28.6.947
[5] Shabala S, Cuin T A. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum, 2008, 133(4): 651-669. doi: 10.1111/j.1399-3054.2007.01008.x
[6] Sun J, Chen S L, Dai S X, et al. Ion flux profiles and plant ion homeostasis control under salt stress[J]. Plant Signaling & Behavior, 2009, 4(4): 261-264.
[7] Chen Z H, Pottosin I I, Cuin T A, et al. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley[J]. Plant Physiology, 2007, 145(4): 1714-1725. doi: 10.1104/pp.107.110262
[8] Cuin T A, Betts S A, Chalmandrier R, et al. A root's ability to retain K+ correlates with salt tolerance in wheat[J]. Journal of Experimental Botany, 2008, 59(10): 2697-2706. doi: 10.1093/jxb/ern128
[9] Sun J, Chen S L, Dai S X, et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species[J]. Plant Physiology, 2009, 149(2): 1141-1153. doi: 10.1104/pp.108.129494
[10] 中科院"中国植物志"编辑委员会. 中国植物志[M]. 北京: 科学出版社, 2013, 43: 120-121.
[11] 成铁龙, 李焕勇, 武海雯, 等. 盐胁迫下4种耐盐植物渗透调节物质积累的比较[J]. 林业科学研究, 2015, 28(6): 826-832. doi: 10.3969/j.issn.1001-1498.2015.06.010
[12] 陈志强, 李庆贱, 时瑞亭, 等. 苏打盐碱胁迫对西伯利亚白刺光合和生长的影响[J]. 北京林业大学学报, 2011, 33(3): 31-37.
[13] 萨日娜, 陈贵林. 外源亚精胺对盐胁迫下白刺幼苗叶片抗氧化酶系统的影响[J]. 西北植物学报, 2013, 33(2): 352-356. doi: 10.3969/j.issn.1000-4025.2013.02.022
[14] 张丽. 3种白刺对盐胁迫的响应及耐盐机理研究[D]. 北京: 中国林业科学研究院, 2010.
[15] 杨升, 张华新, 刘涛. 盐胁迫对16种幼苗渗透调节物质的影响[J]. 林业科学研究, 2012, 25(3): 269-277. doi: 10.3969/j.issn.1001-1498.2012.03.002
[16] 刘正祥, 张华新, 杨秀艳, 等. NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性[J]. 生态学报, 2014, 34(2): 326-336.
[17] 刘正祥. 沙枣对氯化钠和硫酸钠胁迫差异性响应的生理机制[D]. 北京: 中国林业科学研究所院, 2013.
[18] 孙健. 胡杨响应盐胁迫与离子平衡调控信号网络研究[D]. 北京: 北京林业大学, 2011.
[19] Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance[J]. World Science-Technology Rearch & Development, 2006, 28(4): 70-76.
[20] Peng Z, He S F, Sun J L, et al. Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings[J]. Scientific Reports, 2016, 6: 34548-34562. doi: 10.1038/srep34548
[21] 张海燕. 盐胁迫下盐地碱蓬体内无机离子含量分布特点的研究[J]. 西北植物学报, 2002, 22(1): 129-135. doi: 10.3321/j.issn:1000-4025.2002.01.022
[22] 杨秀艳, 张华新, 张丽, 等. NaCl胁迫对唐古特白刺幼苗生长及离子吸收、运输与分配的影响[J]. 林业科学, 2013, 49(9): 165-171.
[23] 韩志平, 郭世荣, 郑瑞娜, 等. 盐胁迫对小型西瓜幼苗体内离子分布的影响[J]. 植物营养与肥料学报, 2013, 19(4): 908-917.
[24] 杨成龙, 段瑞军, 李瑞梅, 等. 盐生植物海马齿耐盐的生理特性[J]. 生态学报, 2010, 30(17): 4617-4627.
[25] Carden D E, Walker D J, Flowers T J, et al. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance[J]. Plant Physiology, 2003, 131(2): 676-683. doi: 10.1104/pp.011445
[26] Zhang J L, Shi H. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115(1): 1-22. doi: 10.1007/s11120-013-9813-6
[27] 杨升, 张华新, 刘涛, 等. NaCl胁迫下沙枣幼苗的离子代谢特性[J]. 林业科学研究, 2016, 29(1): 140-146. doi: 10.3969/j.issn.1001-1498.2016.01.020
[28] Feki K, Quintero F J, Khoudi H, et al. A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis[J]. Plant Cell Reports, 2014, 33(2): 277-288. doi: 10.1007/s00299-013-1528-9
[29] 王晓冬, 王成, 马智宏, 等. 短期NaCl胁迫对不同小麦品种幼苗K+吸收和Na+、K+积累的影响[J]. 生态学报, 2011, 31(10): 2822-2830.
[30] Ma Q, Li Y X, Yuan H J, et al. ZxSOS1 is essential for long-distance transport and spatial distribution of Na+ and K+ in the xerophyte Zygophyllum xanthoxylum[J]. Plant and Soil, 2014, 374(1-2): 661-676. doi: 10.1007/s11104-013-1891-x
[31] Maathuis F J. The role of monovalent cation transporters in plant responses to salinity[J]. Journal of Experimental Botany, 2006, 57(5): 1137-1147. doi: 10.1093/jxb/erj001