[1] 蒋益花, 蒋新龙. 红花继木叶红色素的提取及性质研究[J]. 中国调味品, 2005(11): 38-42.
[2] 薛晓丽. 紫叶李叶中花青素含量的测定[J]. 湖北农业科学, 2010, 49(4): 956-958. doi: 10.3969/j.issn.0439-8114.2010.04.061
[3] 蒋新龙. 紫叶酢浆草色素的提取及性质研究[J]. 食品科技, 2006, 31(5): 72-76.
[4] 胡旭芳. 红叶石楠红色素中花色苷成分的定性和定量研究[J]. 农学学报, 2013, 3(12): 45-47. doi: 10.3969/j.issn.1007-7774.2013.12.010
[5] Kim S, Yoo K S, Pike L M. Development of a PCR-based marker utilizing a deletion mutation in the dihydroflavonol 4-reductase (DFR) gene responsible for the lack of anthocyanin production in yellow onions (Allium cepa)[J]. Theor Appl Genet, 2005, 110(3): 588-595. doi: 10.1007/s00122-004-1882-7
[6] Mori S, Otani M, Kobayashi H, et al. Isolation and characterization of the dihydroflavonol 4-reductase gene in the monocotyledonous ornamental Agapanthus praecox ssp. orientalis (Leighton) Leighton[J]. Scientia Horticulturae, 2014, 166(1): 24-30.
[7] Rosati C, Simoneau P, Treutter D, et al. Engineering of flower color in forsythia by expression of two independently-transformed 4-reductase and anthocyanidin synthase genes of flavonoid pathway[J]. Molecular Breeding, 2003, 12(3): 197-208. doi: 10.1023/A:1026364618719
[8] Li X J, Zhang J Q, Wu Z C, et al. Functional characterization of a glucosyltransferase gene, LcUFGT1, involved in the formation of cyanidin glucoside in the pericarp of Litchi chinensis[J]. Physiologia Plantarum, 2016, 156(2): 139-149. doi: 10.1111/ppl.12391
[9] Qi X, Shuai Q, Chen H, et al. Cloning and expression analyses of the anthocyanin biosynthetic genes in mulberry plants[J]. Mol Genet Genomics, 2014, 289(5): 783-793. doi: 10.1007/s00438-014-0851-3
[10] Zhao Z C, Hu G B, Hu F C, et al. The UDP glucose: flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn. ) during fruit coloration[J]. Molecular biology reports, 2012, 39(6): 6409-6415. doi: 10.1007/s11033-011-1303-3
[11] Bogs J, Downey M O, Harvey J S, et al. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves[J]. Plant Physiology, 2005, 139(2): 652-663. doi: 10.1104/pp.105.064238
[12] 李雪, 李志英, 丛汉卿, 等. 红掌ANR基因克隆及其表达与佛焰苞颜色的相关性分析[J]. 分子植物育种, 2013, 11(6): 825-830.
[13] Chu Y, Pan J, Wu A, et al. Molecular cloning and functional characterization of(dihydroflavonol-4-reductase)gene from(Calibrachoa hybrida)[J]. Scientia Horticulturae, 2014, 165(70): 398-403.
[14] Inomata Y, Terahara N, Kitajima J, et al. Flavones and anthocyanins from the leaves and flowers of Japanese Ajuga species (Lamiaceae)[J]. Biochemical Systematics and Ecology, 2013, 51(4): 123-129.
[15] Punyasiri P, Abeysinghe I, Kumar V, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Archives of Biochemistry and Biophysics, 2004, 431(1): 22-30.
[16] Kerio L, Wachira F, Wanyoko J, et al. Characterization of anthocyanins in Kenyan teas: Extraction and identification[J]. Food Chemistry, 2012, 131(1): 31-38.
[17] Li J B, Hashimoto F, Shimizu K, et al. Chemical taxonomy of red-flowered wild Camellia species based on floral anthocyanins[J]. Phytochemistry, 2013, 85(1): 99-106.
[18] Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis[J]. The Plant Cell, 1995, 7(7): 1071-1083.
[19] Jiang X, Liu Y, Wu Y, et al. Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant (Camellia sinensis)[J]. Sci Rep, 2015, 5: 8742.