[1] Harmon M E, Franklin J F, Swanson F J, et al. Ecology of coarse woody debris in temperate ecosystems[J]. Advances in Ecological Research, 1986, 15:133-302. doi: 10.1016/S0065-2504(08)60121-X
[2] Guo X. Natural regeneration on coarse woody debris[D]. Vancouver of BC Canada: University of British Columbia, 2011.
[3] Moseley K R, Castleberry S B, Ford W M. Coarse woody debris and pine litter manipulation effects on movement and microhabitat use of Ambystoma talpoideum in a Pinus taeda stand[J]. Forest Ecology and Management, 2004, 191(1/3):387-396.
[4] Lee S, Kim S, Roh Y, et al. Effects of termite activities on coarse woody debris decomposition in an intact lowland mixed dipterocarp forest of Brunei Darussalam[C]//EGU. General Assembly Conference Abstracts, 2016, 18: 10873.
[5] Magnússon R í, Tietema A, Cornelissen J H C, et al. Tamm review:Sequestration of carbon from coarse woody debris in forest soils[J]. Forest Ecology and Management, 2016, 377:1-15. doi: 10.1016/j.foreco.2016.06.033
[6] 张利敏, 王传宽, 唐艳. 11种温带树种粗木质残体分解初期结构性成分和呼吸速率的变化[J].生态学报, 2011, 31(17):5017-5024.
[7] Chao K J, Chen Y S, Song G Z M, et al. Carbon concentration declines with decay class in tropical forest woody debris[J]. Forest Ecology and Management, 2017, 391:75-85. doi: 10.1016/j.foreco.2017.01.020
[8] Brischke C, Rapp A O. Influence of wood moisture content and wood temperature on fungal decay in the field:observations in different micro-climates[J]. Wood Science and Technology, 2008, 42(8):663-677. doi: 10.1007/s00226-008-0190-9
[9] Shorohova E, Kapitsa E. Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests[J]. Forest Ecology and Management, 2014, 315(315):173-184.
[10] 吕明和, 周国逸, 张德强, 等.鼎湖山锥栗粗木质残体的分解和元素动态[J].热带亚热带植物学报, 2006, 14(2):107-111. doi: 10.3969/j.issn.1005-3395.2006.02.003
[11] Wang C, Bond-Lamberty B, Gower S T. Environmental controls on carbon dioxide flux from black spruce coarse woody debris[J].Oecologia, 2002, 132(3):374-381. doi: 10.1007/s00442-002-0987-4
[12] Mackensen J, Bauhus J. Density loss and respiration rates in coarse woody debris of Pinus radiata, Eucalyptus regnans and Eucalyptus maculata[J]. Soil Biology and Biochemistry, 2015, 35(1):177-186.
[13] 孙秀云, 王传宽.东北主要树种倒木分解释放的CO2通量[J].生态学报, 2007, 27(12):5130-5137. doi: 10.3321/j.issn:1000-0933.2007.12.022
[14] 张利敏. 11个温带树种粗木质残体分解过程中碳动态及影响因子[D].哈尔滨: 东北林业大学, 2010.
[15] Gough C M, Vogel C S, Kazanski C, et al. Coarse woody debris and the carbon balance of a north temperate forest[J]. Forest Ecology and Management, 2007, 244(1/3):60-67.
[16] Jomura M, Kominami Y, Dannoura M, et al. Spatial variation in respiration from coarse woody debris in a temperate secondary broad-leaved forest in Japan[J]. Forest Ecology and Management, 2008, 255(1):149-155. doi: 10.1016/j.foreco.2007.09.002
[17] 矫海洋, 王顺忠, 王曼霖, 等.大兴安岭北坡兴安落叶松粗木质残体呼吸动态[J].东北林业大学学报, 2014, 42(6):29-33. doi: 10.3969/j.issn.1000-5382.2014.06.007
[18] 杨方方, 李跃林, 刘兴诏.鼎湖山木荷(Schima Superba)粗死木质残体的分解研究[J].山地学报, 2009, 27(4):442-448. doi: 10.3969/j.issn.1008-2786.2009.04.008
[19] 刘强, 杨智杰, 贺旭东, 等.中亚热带常绿阔叶林粗木质残体呼吸季节动态及影响因素[J].生态学报, 2012, 32(10):3061-3068.
[20] 樊小丽, 周光益, 赵厚本, 等.岭南藜蒴栲-罗浮柿群系粗木质残体的基本特征[J].林业科学研究, 2016, 29(3):448-454. doi: 10.3969/j.issn.1001-1498.2016.03.022
[21] Noll L, Leonhardt S, Arnstadt T, et al. Fungal biomass and extracellular enzyme activities in coarse woody debris of 13 tree species in the early phase of decomposition[J]. Forest Ecology and Management, 2016, 378:181-192. doi: 10.1016/j.foreco.2016.07.035
[22] 耿元波, 史晶晶.草原凋落物的分解及营养元素的释放和累积[J].地理科学进展, 2012, 31(5):655-663.
[23] Weedon J T, Cornwell W K, Cornelissen J H C, et al. Global meta-analysis of wood decomposition rates:a role for trait variation among tree species[J]. Ecology Letters, 2009, 12(1):45-56. doi: 10.1111/ele.2008.12.issue-1
[24] Noh N J, Yoon T K, Kim R H, et al. Carbon and nitrogen accumulation and decomposition from coarse woody debris in a naturally regenerated Korean red pine (Pinus densiflora S. et Z.) forest[J]. Forests, 2017, 8(6):214. doi: 10.3390/f8060214
[25] Katsumata S, Hobara S, Osono T, et al.Mass, nitrogen content, and decomposition of woody debris in forest stands affected by excreta deposited in nesting colonies of Great Cormorant[J]. Ecological Research, 2015, 30(4):555-561. doi: 10.1007/s11284-015-1256-4
[26] 范跃新, 杨智杰, 郭剑芬, 等.万木林自然保护区不同分解等级粗木质残体呼吸的温度敏感性[J].亚热带资源与环境学报, 2010, 5(3):36-42. doi: 10.3969/j.issn.1673-7105.2010.03.005
[27] 国家教育委员会.JY/T 017-1996.元素分析仪方法通则[S].北京: 科学技术文献出版社, 1996.
[28] Zell J, Kändler G, Hanewinkel M. Predicting constant decay rates of coarse woody debris-a meta-analysis approach with a mixed model[J].Ecological Modelling, 2009, 220(7):904-912. doi: 10.1016/j.ecolmodel.2009.01.020
[29] Herrmann S, Bauhus J. Effects of moisture, temperature and decomposition stage on respirational carbon loss from coarse woody debris (CWD) of important European tree species[J]. Scandinavian Journal of Forest Research, 2013, 28(4):346-357. doi: 10.1080/02827581.2012.747622
[30] 吴家兵, 关德新, 韩士杰, 等.长白山地区红松和紫椴倒木呼吸研究[J].北京林业大学学报, 2008, 30(2):14-19. doi: 10.3321/j.issn:1000-1522.2008.02.003
[31] Chen H, Harmon M E, Griffiths R P, et al. Effects of temperature and moisture on carbon respired from decomposing woody roots[J]. Forest Ecology and Management, 2000, 138(1):51-64.
[32] Davidson E A, Janssens I A, Luo Y. On the variability of respiration in terrestrial ecosystems:moving beyond Q10[J]. Global Change Biology, 2006, 12(2):154-164. doi: 10.1111/gcb.2006.12.issue-2
[33] 贺旭东.万木林常绿阔叶林粗木质残体碳库及其呼吸通量研究[D].福州: 福建师范大学, 2010.
[34] 章广琦, 张萍, 陈云明, 等.黄土丘陵区刺槐与油松人工林生态系统生态化学计量特征[J].生态学报, 2018, 38(4):1328-1336.