[1] Zhang K, Dang H, Zhang Q, et al. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: evidence from stable isotopes[J]. Global Change Biology, 2015, 21(7): 2762-2772. doi: 10.1111/gcb.12886
[2] Eze S, Palmer S M, Chapman P J. Soil organic carbon stock and fractional distribution in upland grasslands[J]. Geoderma, 2018, 314: 175-183. doi: 10.1016/j.geoderma.2017.11.017
[3] 吴庆标, 王效科, 郭 然. 土壤有机碳稳定性及其影响因素[J]. 土壤通报, 2005, 36(5):743-747. doi: 10.3321/j.issn:0564-3945.2005.05.026
[4] Ziegler S E, Billings S A, Lane C S, et al. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils[J]. Soil Biology and Biochemistry, 2013, 60: 23-32. doi: 10.1016/j.soilbio.2013.01.001
[5] Chen J, Xiao W, Zheng C, et al. Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest[J]. Soil Biology and Biochemistry, 2020, 142: 107708. doi: 10.1016/j.soilbio.2020.107708
[6] 江淼华, 吕茂奎, 林伟盛, 等. 生态恢复对红壤侵蚀地土壤有机碳组成及稳定性的影响[J]. 生态学报, 2018, 38(13):4861-4868.
[7] 吴建国, 张小全, 王彦辉, 等. 土地利用变化对土壤物理组分中有机碳分配的影响[J]. 林业科学, 2002, 38(4):19-29. doi: 10.3321/j.issn:1001-7488.2002.04.004
[8] 姬 强. 土壤颗粒态有机碳及其活性对不同耕作措施的响应[D]. 杨凌: 西北农林科技大学, 2012.
[9] Gregorich E G, Beare M H, Mckim U F, et al. Chemical and biological characteristics of physically uncomplexed organic matter[J]. Soil Science Society of America Journal, 2006, 70(3): 975-985. doi: 10.2136/sssaj2005.0116
[10] Whalen J K, Bottomley P J, Myrold D D. Carbon and nitrogen mineralization from light- and heavy-fraction additions to soil[J]. Soil Biology and Biochemistry, 2000, 32(10): 1345-1352. doi: 10.1016/S0038-0717(00)00040-7
[11] 林 栋, 张德罡. 草地轮作年限和季节对土壤不同组分有机氮含量的影响[J]. 草原与草坪, 2020, 40(3):23-29.
[12] 唐国勇, 李 昆, 孙永玉, 等. 干热河谷4种固氮植物根瘤固氮潜力及其影响因素[J]. 林业科学研究, 2012, 25(4):432-437. doi: 10.3969/j.issn.1001-1498.2012.04.004
[13] 马姜明, 李 昆, 等. 元谋干热河谷人工林的土壤养分效应及其评价[J]. 林业科学研究, 2006, 19(4):467-471. doi: 10.3321/j.issn:1001-1498.2006.04.011
[14] Vanlauwe B, Sanginga N, Merckx R. Soil organic matter dynamics after addition of nitrogen-15-labeled leucaena and dactyladenia residues[J]. Soil Science Society of America Journal, 1998, 62(2): 461-466. doi: 10.2136/sssaj1998.03615995006200020024x
[15] 方海东, 纪中华, 杨艳鲜, 等. 金沙江干热河谷新银合欢人工林物种多样性研究[J]. 水土保持研究, 2005, 12(1):135-137. doi: 10.3969/j.issn.1005-3409.2005.01.040
[16] Tang G, LI K. Tree species controls on soil carbon sequestration and carbon stability following 20 years of afforestation in a valley-type savanna[J]. Forest Ecology and Management, 2013, 291: 13-19. doi: 10.1016/j.foreco.2012.12.001
[17] 王艳丹, 张梦寅, 范建成, 等. 金沙江干热河谷银合欢人工林的土壤水分变化特征[J]. 热带生物学报, 2018, 9(1):61-68. doi: 10.15886/j.cnki.rdswxb.2018.01.08
[18] 唐国勇, 李 昆, 孙永玉, 等. 干热河谷不同利用方式下土壤活性有机碳含量及其分配特征[J]. 环境科学, 2010, 31(5):1365-1371.
[19] 宗亦臣, 郑勇奇, 张川红, 等. 元谋干热河谷地区新银合欢天然更新的初步调查[J]. 生态学杂志, 2007, 26(1):135-138. doi: 10.3321/j.issn:1000-4890.2007.01.026
[20] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
[21] Bu R, Lu J, Ren T, et al. Particulate organic matter affects soil nitrogen mineralization under two crop rotation systems[J]. PLoS ONE, 2015, 10(12): e0143835. doi: 10.1371/journal.pone.0143835
[22] Novara A, Gristina L, La Mantia T, et al. Carbon dynamics of soil organic matter in bulk soil and aggregate fraction during secondary succession in a Mediterranean environment[J]. Geoderma, 2013, 193-194: 213-221. doi: 10.1016/j.geoderma.2021.08.036
[23] Liu X, Yang T, Wang Q, et al. Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis[J]. Science of the Total Environment, 2018, 618: 1658-1664. doi: 10.1016/j.scitotenv.2017.10.009
[24] Joshi R K, Garkoti S C. Dynamics of ecosystem carbon stocks in a chronosequence of nitrogen‐fixing Nepalese alder (Alnus nepalensis D. Don. ) forest stands in the central Himalaya[J]. Land Degradation and Development, 2021. DOI: 10.1002/Idr.3901.
[25] 董生健, 何小谦. 黄土丘陵区不同林龄人工刺槐林下植被及土壤系统演变特征[J]. 水土保持通报, 2016, 36(5):20-27.
[26] 唐国勇, 李 昆, 孙永玉, 等. 土地利用方式对土壤有机碳和碳库管理指数的影响[J]. 林业科学研究, 2011, 24(6):754-759.
[27] Song X, Shi S, Lu S, et al. Changes in soil chemical properties following afforestation of cropland with Robinia pseudoacacia in the southeastern Loess Plateau of China[J]. Forest Ecology and Management, 2021, 487: 118993. doi: 10.1016/j.foreco.2021.118993
[28] 唐国勇, 高成杰, 李 昆. 植被恢复对干热河谷退化土壤改良的影响[J]. 生态学报, 2015, 35(15):5157-5167.
[29] Dana E D, Mota J F. Vegetation and soil recovery on gypsum outcrops in semi-arid Spain[J]. Journal of Arid Environments, 2006, 65(3): 444-459. doi: 10.1016/j.jaridenv.2005.08.009
[30] Forrester D I, Bauhus J, Cowie A L, et al. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review[J]. Forest Ecology and Management, 2006, 233(2-3): 211-230. doi: 10.1016/j.foreco.2006.05.012
[31] 朱 凯, 李玉灵, 徐学华, 等. 不同林龄刺槐林对冀东铁尾矿客土土壤养分含量的影响[J]. 河北农业大学学报, 2016, 39(1):69-74.
[32] Von Lüetzow M, Köegel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review[J]. European Journal of Soil Science, 2006, 57(4): 426-445. doi: 10.1111/j.1365-2389.2006.00809.x
[33] Mendham D S, Heagney E C, Corbeels M, et al. Soil particulate organic matter effects on nitrogen availability after afforestation with Eucalyptus globulus[J]. Soil Biology and Biochemistry, 2004, 36(7): 1067-1074. doi: 10.1016/j.soilbio.2004.02.018
[34] Franzluebbers A J, Arshad M A. Particulate organic carbon content and potential mineralization as affected by tillage and texture[J]. Soil Science Society of America Journal, 1997, 61(5): 1382-1386. doi: 10.2136/sssaj1997.03615995006100050014x
[35] 刘志祥, 郝庆菊, 江长胜, 等. 耕作方式对紫色水稻土颗粒态氮的影响[J]. 水土保持学报, 2011, 25(6):110-114.
[36] Cambardella C A, Elliott E T. Carbon and nitrogen dynamics of soil organic-matter fractions from cultivated grassland soils[J]. Soil Science Society of America Journal, 1994, 58(1): 123-130. doi: 10.2136/sssaj1994.03615995005800010017x
[37] Gosling P, Parsons N, Bending G D. What are the primary factors controlling the light fraction and particulate soil organic matter content of agricultural soils?[J]. Biology and Fertility of Soils, 2013, 49(8): 1001-1014. doi: 10.1007/s00374-013-0791-9
[38] 吴建国, 艾 丽. 土壤颗粒组分中氮含量及其与海拔和植被的关系[J]. 林业科学, 2008, 44(6):10-19. doi: 10.3321/j.issn:1001-7488.2008.06.004
[39] Alvarez C R, Alvarez R. Are active organic matter fractions suitable indices of management effects on soil carbon? A meta-analysis of data from the Pampas[J]. Archives of Agronomy and Soil Science, 2016, 62(11): 1592-1601. doi: 10.1080/03650340.2016.1150590
[40] St Luce M, Whalen J K, Ziadi N, et al. Labile organic nitrogen transformations in clay and sandy-loam soils amended with 15N-labelled faba bean and wheat residues[J]. Soil Biology and Biochemistry, 2014, 68: 208-218. doi: 10.1016/j.soilbio.2013.09.033
[41] Xiao Y, Huang Z G, Lu X G. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China[J]. Ecological Engineering, 2015, 82: 381-389. doi: 10.1016/j.ecoleng.2015.05.015
[42] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937-3947. doi: 10.3321/j.issn:1000-0933.2008.08.054
[43] Zibilske L M, Bradford J M. Soil aggregation, aggregate carbon and nitrogen, and moisture retention induced by conservation tillage[J]. Soil Science Society of America Journal, 2007, 71(3): 793-802. doi: 10.2136/sssaj2006.0217