[1] 李世晋. 亚洲黄檀[M]. 北京: 科学出版社, 2017: 60-61.
[2] 王 磊, 刘久东, 耿云芬, 等. 黑黄檀的植物学特性及资源培育技术概况[J]. 林业调查规划, 2016, 41(4):75-79. doi: 10.3969/j.issn.1671-3168.2016.04.017
[3] Liu Y, Huang P, Lin F R, et al. Maxent modelling for predicting the potential distribution of a near threatened rosewood species (Dalbergia cultrata Graham ex Benth)[J]. Ecological Engineering, 2019, 141: 105612. doi: 10.1016/j.ecoleng.2019.105612
[4] 张 辉, 王立新, 付 强, 等. 澜沧江中下游黑黄檀种群结构及保护对策[J]. 西南林学院学报, 2010, 30(1):25-28.
[5] 邱 琼, 金美英, 杨德军, 等. 黑黄檀容器育苗基质筛选试验[J]. 湖南林业科技, 2015, 42(1):19-22. doi: 10.3969/j.issn.1003-5710.2015.01.005
[6] Donnelly D M X, O`Reilly J, Thompson J. Neoflavanoids of Dalbergia cultrata[J]. Photochemistry, 1972, 11(2): 823-826. doi: 10.1016/0031-9422(72)80056-6
[7] 覃海宁, 杨 永, 董仕勇, 等. 中国高等植物受威胁物种名录[J]. 生物多样性, 2017, 25(7):696-744. doi: 10.17520/biods.2017144
[8] Sun R X, Lin F R, Huang P, et al. Moderate genetic diversity and genetic differentiation in the relict tree Liquidambar formosana Hance revealed by genic simple sequence repeat markers[J]. Frontiers in Plant Science, 2016, 7: 1411.
[9] Wang R K, Fan J S, Chang P, et al. Genome survey sequencing of Acer truncatum Bunge to identify genomic information, simple sequence repeat (SSR) markers and complete chloroplast cenome[J]. Forests, 2019, 10(2): 87. doi: 10.3390/f10020087
[10] Wang C R, Yan H D, Li J, et al. Genome survey sequencing of purple elephant grass (Pennisetum purpureum Schum ‘Zise’) and identification of its SSR markers[J]. Molecular Breeding, 2018, 38(7): 22-31.
[11] Motalebipour E Z, Kafkas S, Khodaeiaminjan M, et al. Genome survey of pistachio (Pistacia vera L. ) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species[J]. BMC Genomics, 2016, 17(1): 998. doi: 10.1186/s12864-016-3359-x
[12] Doyle J J T, Doyle J L. Isolation of plant DNA from fresh tissue[J]. Focus, 1990, 12(1): 13-15.
[13] Vurture G W, Sedlazeck F J, Nattestad M, et al. GenomeScope: Fast reference-free genome profiling from short reads[J]. Bioinformatics, 2017, 33(14): 2202-2204. doi: 10.1093/bioinformatics/btx153
[14] Luo R B, Liu B H, Xie Y L, et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1): 11-16. doi: 10.1186/s13742-015-0050-0
[15] Peakall R, Smouse P E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update[J]. Bioinformatics, 2012, 28(19): 2537-2539. doi: 10.1093/bioinformatics/bts460
[16] Kalinowski S T, Taper M L, and Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity[J]. Molecular Ecology, 2007, 16(5): 1099-1106. doi: 10.1111/j.1365-294X.2007.03089.x
[17] Galbraith D W, Harkins K R, Maddox J M, et al. Rapid flow cytometric analysis of the cell cycle in intact plant tissues[J]. Science, 1983, 220(4601): 1049-1051. doi: 10.1126/science.220.4601.1049
[18] 朱礼明, 黎梦娟, 张景波, 等. 西伯利亚白刺基因组信息初探[J]. 林业科学研究, 2020, 33(1):144-151.
[19] Leitch I J, Johnston E, Pellicer J, et al. Angiosperm DNA C-values database[DB]. 2019, Release 7.1, https://cvalues.science.kew.org.
[20] Hong Z, Li J, Liu X J, et al. The chromosome-level draft genome of Dalbergia odorifera[J]. GigaScience, 2020, 9(8): 1-8.
[21] Veleba A, Bureš P, Adamec L, et al. Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae[J]. New Phytologist, 2014, 203(1): 22-28. doi: 10.1111/nph.12790
[22] Vatanparast M, Klitgård B B, Adema F A C B, et al. First molecular phylogeny of the pantropical genus Dalbergia: Implications for infrageneric circumscription and biogeography[J]. South African Journal of Botany, 2013, 89: 143-149. doi: 10.1016/j.sajb.2013.07.001
[23] 崔 菲. 黄檀属(豆科)的分子系统学研究[D]. 北京: 中国科学院大学, 2014: 52-68.
[24] Song Q J, Shi J R, Singh S, et al. Developmentand mapping of microsatellite (SSR) markers in wheat[J]. Theor Appl Genet, 2005, 110(3): 550-560. doi: 10.1007/s00122-004-1871-x
[25] Lu X, Wang H X, Dai P, et al. Characterization of EST-SSR and genomic-SSR markers in the clam, Meretrix meretrix[J]. Conservation Genetics Resources, 2011, 3(4): 655-658. doi: 10.1007/s12686-011-9426-3
[26] Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: Survey and analysis[J]. Genome Research, 2000, 10(7): 967-981. doi: 10.1101/gr.10.7.967
[27] Cardle L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants[J]. Genetics, 2000, 156(2): 847-854. doi: 10.1093/genetics/156.2.847
[28] Liu F M, Hong Z, Xu D P, et al. Genetic diversity of the endangered Dalbergia odorifera revealed by SSR markers[J]. Forests, 2019, 10: 225. doi: 10.3390/f10030225
[29] Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants[J]. Molecular Ecology, 2004, 13(5): 1143-1155. doi: 10.1111/j.1365-294X.2004.02141.x
[30] Hartvig I, So T, Changtragoon S, et al. Population genetic structure of the endemic rosewoods Dalbergia cochinchinensis and D. oliveri at a regional scale reflects the Indochinese landscape and life-history traits[J]. Ecology and Evolution, 2018, 8(1): 530-545. doi: 10.1002/ece3.3626
[31] Hartvig I, So T, Changtragoon S, et al. Conservation genetics of the critically endangered Siamese rosewood (Dalbergia cochinchinensis): Recommendations for management and sustainable use[J]. Conservation Genetics, 2020, 21(4): 677-692. doi: 10.1007/s10592-020-01279-1
[32] Resende L C, Ribeiro R A, Lovato M B. Diversity and genetic connectivity among populations of a threatened tree (Dalbergia nigra) in a recently fragmented landscape of the Brazilian Atlantic Forest[J]. Genetica, 2011, 139(9): 1159-1168. doi: 10.1007/s10709-011-9618-5
[33] Leite F A B, Brandão R L, Buzatti R S D O, et al. Fine-scale genetic structure of the threatened rosewood Dalbergia nigra from the Atlantic Forest: Comparing saplings versus adults and small fragment versus continuous forest[J]. Tree Genetics and Genomes, 2014, 10(2): 307-316. doi: 10.1007/s11295-013-0685-x
[34] Li C H, Zheng Y Q, Liu Y, et al. Development of genomic SSR for the subtropical hardwood tree Dalbergia hupeana and assessment of their transferability to other related species[J]. Forests, 2021, 12(6): 804. doi: 10.3390/f12060804