[1] 胡 涛, 张鸽香, 郑福超, 等. 植物盐胁迫响应的研究进展[J]. 分子植物育种, 2018, 16(9):3006-3015.
[2] 牛 恋. 植物耐盐生理机制及抗盐性[J]. 河北农机, 2018(2):56.
[3] 欧阳少明. 无瓣海桑的造林技术和管理措施[J]. 农业科技与信息, 2016(15):139-139. doi: 10.3969/j.issn.1003-6997.2016.15.116
[4] 廖 岩, 赵 肖, 陈桂珠. 盐胁迫对无瓣海桑幼苗根茎叶膜保护系统的影响[J]. 海洋环境科学, 2009, 28(2):154-158. doi: 10.3969/j.issn.1007-6336.2009.02.010
[5] 高慧娟, 吕昕培, 王润娟, 等. 转录组测序在林草植物抗逆性研究中的应用[J]. 草业学报, 2019, 28(12):184-196. doi: 10.11686/cyxb2019352
[6] 赵陆滟, 曹绍玉, 龙云树, 等. 全长转录组测序在植物中的应用研究进展[J]. 植物遗传资源学报, 2019, 20(6):1390-1398.
[7] 李玉梅, 李书娴, 李向上, 等. 第三代测序技术在转录组学研究中的应用[J]. 生命科学仪器, 2018, 16(C1):114-121,113.
[8] 周卫星, 石海鹤. 高通量测序中序列拼接算法的研究进展[J]. 计算机科学, 2019, 46(5):36-43. doi: 10.11896/j.issn.1002-137X.2019.05.005
[9] 马东娜, 张兴坦, 魏柳锋, 等. 基因组二代测序数据与三代测序数据的混合校正和组装[J]. 基因组学与应用生物学, 2018, 37(4):1547-1555.
[10] 梅 瑜, 李向荣, 蔡时可, 等. 药食同源植物甘葛藤的全长转录组分析[J]. 华北农学报, 2021, 36(5):10-17. doi: 10.7668/hbnxb.20192213
[11] 郝赛琦. 红树植物白骨壤根系结构与转录组特征研究[D]. 厦门: 厦门大学, 2017: 11-57.
[12] SU W, YE C, ZHANG Y, et al. Identification of putative key genes for coastal environments and cold adaptation in mangrove Kandelia obovata through transcriptome analysis[J]. Science of the Total Environment, 2019, 681: 191-201. doi: 10.1016/j.scitotenv.2019.05.127
[13] YANG Y, YANG S, LI J, et al. De novo assembly of the transcriptomes of two yellow mangroves, Ceriops tagal and C. zippeliana, and one of their terrestrial relatives, Pellacalyx yunnanensis[J]. Marine Genomics, 2015, 23: 33-36. doi: 10.1016/j.margen.2015.04.003
[14] GOU W, WU H, ZHANG Z, et al. Comparative analysis of transcriptomes in Rhizophoraceae provides insights into the origin and adaptive evolution of mangrove plants in intertidal environments[J]. Frontiers in Plant Science, 2017, 8: 795. doi: 10.3389/fpls.2017.00795
[15] YANG Y, YANG S, LI J, et al. Transcriptome analysis of the Holly mangrove Acanthus ilicifolius and its terrestrial relative, Acanthus leucostachyus, provides insights into adaptation to intertidal zones[J]. BMC Genomics, 2015, 16(1): 605. doi: 10.1186/1471-2164-16-1
[16] 刘婷婷, 莫玉剑, 欧成川, 等. 盐胁迫下无瓣海桑差异表达转录因子的转录组信息分析[J]. 分子植物育种, 2022, 20(10): 3210-3222.
[17] CHEN Y, CHEN Y, SHI C, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data[J]. GigaScience, 2018, 7(1): gix120.
[18] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359. doi: 10.1038/nmeth.1923
[19] VUONG H, TRUONG T, TRAN T, et al. A revisit of RSEM generative model and its EM algorithm for quantifying transcript abundances[J]. bioRxiv, 2018: 503672.
[20] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550.
[21] KANEHISA M, ARAKI M, GOTO S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research, 2007, 36(suppl_1): D480-D484.
[22] 吴 寒. 活性氧在植物体内的作用及其清除体制[J]. 广东蚕业, 2018, 52(3):18.
[23] 郭明欣, 刘佳佳, 侯琳琳, 等. 植物体内活性氧的产生及清除机制研究进展[J]. 科技视界, 2021(8):104-106.
[24] 黎 家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学:生命科学, 2019, 49(10):1227-1281.
[25] 朱婷婷, 王彦霞, 裴丽丽, 等. 植物蛋白激酶与作物非生物胁迫抗性的研究[J]. 植物遗传资源学报, 2017, 18(4):763-770.
[26] WANG Y, XU W, CHEN Z, et al. Gene structure, expression pattern and interaction of Nuclear Factor-Y family in castor bean (Ricinus communis)[J]. Planta, 2018, 247(3): 559-572. doi: 10.1007/s00425-017-2809-2
[27] ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324.
[28] 付晴晴, 李商锐, 刘小瑞, 等. NaCl胁迫对不同耐盐性葡萄株系根系活性氧代谢的影响[J]. 中外葡萄与葡萄酒, 2017(3):12-15.
[29] 鲁 琳, 杨尚谕, 刘维东, 等. 基于转录组测序花烟草响应盐胁迫活性氧清除相关基因的挖掘[J]. 生物技术通报, 2020, 36(12):42-53.
[30] KOSAR F, AKRAM N A, SADIQ M, et al. Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance[J]. Journal of Plant Growth Regulation, 2019, 38(2): 606-618. doi: 10.1007/s00344-018-9876-x
[31] 李 辉, 李德芳, 邓 勇, 等. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12):1914-1922.
[32] 张莹莹, 吕 燕, 宣雯燕, 等. 龙须菜(Gracilariopsis lemaneiformis)海藻糖-6-磷酸合成酶(TPS)对逆境胁迫的响应[J]. 海洋与湖沼, 2021, 52(3):777-785. doi: 10.11693/hyhz20200700225
[33] ZHANG H, DONG J, ZHAO X, et al. Research progress in membrane lipid metabolism and molecular mechanism in peanut cold tolerance[J]. Frontiers in Plant Science, 2019, 10: 838. doi: 10.3389/fpls.2019.00838
[34] FUNCK D, BAUMGARTEN L, STIFT M, et al. Differential contribution of P5CS isoforms to stress tolerance in Arabidopsis[J]. Frontiers in Plant Science, 2020, 11: 1483.
[35] GONG Z, XIONG L, SHI H, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020, 63(5): 635-674. doi: 10.1007/s11427-020-1683-x
[36] 刘海洋, 陈玉珍. ABA受体结构及功能与ABA信号通路研究进展[J]. 中国农学通报, 2019, 35(21):75-81. doi: 10.11924/j.issn.1000-6850.casb19010079
[37] 张 弛, 蔚静玲, 储谟立, 等. 拟南芥蛋白磷酸酶PP2C31的盐胁迫响应功能研究[J]. 中国科技论文, 2018, 13(18):2070-2075. doi: 10.3969/j.issn.2095-2783.2018.18.004
[38] ZHANG M, SU J, ZHANG Y, et al. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense[J]. Current Opinion in Plant Biology, 2018(45): 1-10.
[39] ABULFARAJ A A. Stepwise signal transduction cascades under salt stress in leaves of wild barley (Hordeum spontaneum)[J]. Biotechnology & Biotechnological Equipment, 2020, 34(1): 860-872.
[40] KUMAR K, RAINA S K, SULTAN S M. Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response[J]. Journal of Plant Biochemistry and Biotechnology, 2020, 29(4): 700-714. doi: 10.1007/s13562-020-00596-3
[41] 汪芳珍, 杨成行, 何子华, 等. 盐处理下旱生植物沙芥蛋白激酶相关基因的差异表达分析[J]. 草业学报, 2021, 30(10):116-124. doi: 10.11686/cyxb2020368
[42] 潘凌云, 马家冀, 李建民, 等. 植物盐胁迫应答转录因子的研究进展[J]. 生物工程学报, 2022, 38(1):50-65.
[43] DU C, MA B, WU Z, et al. Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants[J]. Journal of Plant Physiology, 2019, 239: 38-51.
[44] LIN J, DANG F, CHEN Y, et al. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper[J]. Plant Physiology and Biochemistry, 2019, 145(C.): 43-51. doi: 10.1016/j.plaphy.2019.08.013