[1] REMY W, TAYLOR T N, HASS H, et al. Four hundred-million-year-old vesicular arbuscular mycorrhizae[J]. Proceedings of the National Academy of Sciences, 1994, 91(25): 11841-11843. doi: 10.1073/pnas.91.25.11841
[2] TRAPPE J M. Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint[J]. Ecophysiology of VA mycorrhizal plants, 1987: 5-25.
[3] ASEEL D G, RASHAD Y M, HAMMAD S M. Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against Tomato Mosaic Virus[J]. Scientific reports, 2019, 9(1): 1-10.
[4] LEAKE J, JOHNSON D, DONNELLY D, et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning[J]. Canadian Journal of Botany, 2004, 82(8): 1016-1045. doi: 10.1139/b04-060
[5] SMITH S E, READ D J. Mycorrhizal symbiosis[M]. New York: Academic press, 2010.
[6] SELVAKUMAR G, SHAGOL C C, KIM K, et al. Spore associated bacteria regulates maize root K+ /Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis[J]. BMC Plant Biology, 2018, 18(1): 1-13. doi: 10.1186/s12870-018-1317-2
[7] van der HEIJDEN M G A, MARTIN F M, Selosse M A, et al. Mycorrhizal ecology and evolution: the past, the present, and the future[J]. New phytologist, 2015, 205(4): 1406-1423. doi: 10.1111/nph.13288
[8] BAHADUR A, BATOOL A, NASIR F, et al. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants[J]. International journal of molecular sciences, 2019, 20(17): 4199. doi: 10.3390/ijms20174199
[9] 王襄平, 王志恒, 方精云. 中国的主要山脉和山峰[J]. 生物多样性, 2004, 12(1):212-218.
[10] 周浙昆. 中国栎属的地理分布[J]. 中国科学院研究生院学报, 1993, 10(1):95-102.
[11] 尤海舟, 刘兴良, 缪 宁, 等. 川滇高山栎种群不同海拔空间格局的尺度效应及个体间空间关联[J]. 生态学报, 2010, 30(15):4004-4011.
[12] 王国严, 徐阿生. 川滇高山栎研究综述[J]. 四川林业科技, 2008, 29(2):23-29. doi: 10.3969/j.issn.1003-5508.2008.02.004
[13] 杨淑娇, 杨永平, 石玲玲, 等. 基于PLFA的高山栎和高山松林松茸菌塘土壤微生物群落特征研究[J]. 生态学报, 2018, 38(5):1630-1638.
[14] 张中峰, 张金池, 黄玉清, 等. 接种丛枝菌根真菌对青冈栎幼苗生长和光合作用的影响[J]. 广西植物, 2013, 33(3):319-323,294. doi: 10.3969/j.issn.1000-3142.2013.03.007
[15] 徐 飞, 贾仰文, 牛存稳, 等. 横断山区气温和降水年季月变化特征[J]. 山地学报, 2018, 36(2):171-183.
[16] KOSKE R E, WALKER C. Gigaspora erythropa, a new species forming arbuscular mycorrhizae[J]. Mycologia, 1984, 76(2): 250-255. doi: 10.1080/00275514.1984.12023833
[17] 唐 燕, 李 敏, 马焕成, 等. 云南轿子山腋花杜鹃菌根多样性研究[J]. 云南大学学报(自然科学版), 2019, 41(5):1062-1072.
[18] 林先贵, 胡君利, 戴 珏, 等. 丛枝菌根真菌群落结构与多样性研究方法概述及实例比较[J]. 应用与环境生物学报, 2017, 23(2):343-350.
[19] 李 龙, 李 丽, 伍建榕, 等. 高黎贡山丛枝菌根真菌多样性研究[J]. 贵州农业科学., 2017, 45(12):45-50.
[20] 崔莉娜, 郭弘婷, 李维扬, 等. 不同林龄杉木人工林茵根侵染特征研究[J]. 生态学报, 2019, 39(6):1926-1934.
[21] 刘润进. 菌根学[M]. 北京: 科学出版社, 2007.
[22] GOSLING P, PROCTOR M, JONES J, et al. Distribution and diversity of Paraglomus spp. in tilled agricultural soils[J]. Mycorrhiza, 2014, 24(1): 1-11. doi: 10.1007/s00572-013-0505-z
[23] de MELLO C M A, da SILVA G A, de ASSIS D M A, et al. Paraglomus pernambucanum sp. nov. and Paraglomus bolivianum comb. nov., and biogeographic distribution of Paraglomus and Pacispora[J]. Journal of Applied Botany and Food Quality, 2013, 86(1): 113-125.
[24] TEDERSOO L, DRENKHAN R, ANSLAN S, et al. High‐throughput identification and diagnostics of pathogens and pests: overview and practical recommendations[J]. Molecular ecology resources, 2019, 19(1): 47-76. doi: 10.1111/1755-0998.12959
[25] 金 樑, 赵 洪, 李 博. 我国菌根研究进展及展望[J]. 应用与环境生物学报, 2004, 10(4):515-520. doi: 10.3321/j.issn:1006-687X.2004.04.027
[26] 胡从从, 成 斌, 王 坤, 等. 蒙古沙冬青及其伴生植物AM真菌物种多样性[J]. 生态学报, 2017, 37(23):7972-7982.
[27] QIU Y X, FU C X, COMES H P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora[J]. Molecular Phylogenetics & Evolution, 2011, 59(1): 225-244.
[28] YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Ann. Rev. Earth Planet., 2003, 28: 211-280.
[29] FENG L, ZHENG Q J, QIAN Z Q, et al. Genetic structure and evolutionary history of three Alpine Sclerophyllous oaks in East Himalaya-Hengduan Mountains and adjacent regions[J]. Frontiers in plant science, 2016, 7: 1688.
[30] 杨钦周. 中国一喜马拉雅地区硬叶栎林的特点与分类[J]. 植物生态学与地植物学学报, 1990, 14(3):197-211.
[31] SCHWARZOTT D, WALKER C, SCHÜßLER A. Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic.[J]. Molecular Phylogenetics & Evolution, 2001, 21(2): 190-197.
[32] 罗 睿, 郭建军. PCR反应的动力学模拟和相关因素对扩增结果的影响[J]. 贵州大学学报(自然科学版), 2007(6):653-660.
[33] 武 慧, 田 媛, 周晓馥. 土壤AM真菌PCR扩增方法优化[J]. 吉林师范大学学报(自然科学版), 2020, 41(04):93-97.
[34] BÉCARD G, PICHÉ Y. Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis[J]. Applied and environmental microbiology, 1989, 55(9): 2320-2325. doi: 10.1128/aem.55.9.2320-2325.1989
[35] BAGO B, PFEFFER P E, DOUDS D D, et al. Carbon Metabolism in Spores of the Arbuscular Mycorrhizal FungusGlomus intraradices as Revealed by Nuclear Magnetic Resonance Spectroscopy[J]. Plant Physiology, 1999, 121(1): 263-272. doi: 10.1104/pp.121.1.263