[1] Buonanno G, Giovinco G, Morawska L, et al. Lung cancer risk of airborne particles for Italian population[J]. Environmental Research, 2015, 142: 443-451. doi: 10.1016/j.envres.2015.07.019
[2] Joner E J, Leyval C, Colpaert J V, et al. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere[J]. Environmental Pollution, 2006, 142(1): 34-38. doi: 10.1016/j.envpol.2005.09.007
[3] Agnello A C, Bagard M, van Hullebusch E D, et al. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation[J]. Science of the Total Environment, 2016, 563-564: 693-703. doi: 10.1016/j.scitotenv.2015.10.061
[4] Kuppusamy S, Thavamani P, Venkateswarlu K, et al. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions[J]. Chemosphere, 2017, 168: 944-968. doi: 10.1016/j.chemosphere.2016.10.115
[5] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures[C]. Lyons: International Agency for Research on Cancer, 2010.
[6] Bamforth S M, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(7): 723-736.
[7] Ghosal D, Ghosh S, Dutta T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Frontiersin Microbiology, 2016, 7: 1369.
[8] García-Sánchez M, Kosnar Z, Mercl F, et al. A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil[J]. Ecotoxicology and Environmental Safety, 2018, 147: 165-174. doi: 10.1016/j.ecoenv.2017.08.012
[9] Alagić S Č, Maluckov B S, Radojičić V B, et al. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review[J]. Clean Technologies and Environmental Policy, 2015, 17(3): 597-614. doi: 10.1007/s10098-014-0840-6
[10] Huang A C, Jiang T, Liu Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364: 6440.
[11] Marmiroli M, Pietrini F, Maestri E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics[J]. Tree Physiology, 2011, 31(12): 1319-1334. doi: 10.1093/treephys/tpr090
[12] Carvalhais L C, Dennis P G, Fedoseyenko D, et al. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(1): 3-11. doi: 10.1002/jpln.201000085
[13] Luo Q, Wang S, Sun L N, et al. Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS[J]. Scientific Reports, 2017, 7: 39878. doi: 10.1038/srep39878
[14] Guo M, Gong Z, Miao R, et al. The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure[J]. Ecological Engineering, 2017, 99: 22-30. doi: 10.1016/j.ecoleng.2016.11.018
[15] Tian W, Zhao J, Zhou Y, et al. Effects of root exudates on gel-beads/reeds combination remediation of high molecular weight polycyclic aromatic hydrocarbons[J]. Ecotoxicology and Environmental Safety, 2017, 135: 158-164. doi: 10.1016/j.ecoenv.2016.09.021
[16] Jiang S, Xie F, Lu H, et al. Response of low-molecular-weight organic acids in mangrove root exudates to exposure of polycyclic aromatic hydrocarbons[J]. Environmental Science and Pollution Research, 2017, 24(13): 12484-12493. doi: 10.1007/s11356-017-8845-4
[17] Lapie C, Sterckeman T, Paris C, et al. Impact of phenanthrene on primary metabolite profiling in root exudates and maize mucilage[J]. Environmental Science and Pollution Research, 2020, 27(3): 3124-3142. doi: 10.1007/s11356-019-07298-x
[18] Kawamoto K, Oashi T, Oami K, et al. Perfluorooctanoic acid (PFOA) but not perfluorooctane sulfonate (PFOS) showed DNA damage in comet assay on Paramecium caudatum.[J]. The Journal of Toxicological Sciences, 2010, 35(6): 835-841. doi: 10.2131/jts.35.835
[19] Sivaram A K, Subashchandrabose S R, Logeshwaran P, et al. Metabolomics reveals defensive mechanisms adapted by maize on exposure to high molecular weight polycyclic aromatic hydrocarbons[J]. Chemosphere, 2019, 214: 771-780. doi: 10.1016/j.chemosphere.2018.09.170
[20] Yuan J, Zhao J, Wen T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6(1): 156. doi: 10.1186/s40168-018-0537-x
[21] Swenson T L, Karaoz U, Swenson J M, et al. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics[J]. Nature Communications, 2018, 9(1): 19. doi: 10.1038/s41467-017-02356-9
[22] Luo F, Wang Q, Yin C, et al. Differential metabolic responses of Beauveria bassiana cultured in pupae extracts, root exudates and its interactions with insect and plant[J]. Journal of Invertebrate Pathology, 2015, 130: 154-164. doi: 10.1016/j.jip.2015.01.003
[23] 彭钰洁, 程 楠, 李佳佳, 等. 氮肥减施对玉米幼苗根系分泌物影响的根际代谢组学分析[J]. 中国生态农业学报, 2018, 26(164):21-28.
[24] 马晓东, 李 霞, 刘俊祥, 等. 多环芳烃(PAHs)污染土壤中接种平滑白蛋巢菌对蒿柳光合作用的影响[J]. 北京林业大学学报, 2020, 42(5):80-87. doi: 10.12171/j.1000-1522.20190340
[25] Reina R, Liers C, Ocampo J A, et al. Solid state fermentation of olive mill residues by wood- and dung-dwelling Agaricomycetes: effects on peroxidase production, biomass development and phenol phytotoxicity[J]. Chemosphere, 2013, 93(7): 1406-1412. doi: 10.1016/j.chemosphere.2013.07.006
[26] Wang J, Zhang T, Shen X, et al. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS[J]. Metabolomics, 2016, 12(7): 116. doi: 10.1007/s11306-016-1050-5
[27] Want E J, O′Maille G, Abagyan R, et al. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification[J]. Analytical Chemistry, 2006, 78(3): 779-787. doi: 10.1021/ac051437y
[28] Saccenti E, Hoefsloot H C J, Smilde A K, et al. Reflections on univariate and multivariate analysis of metabolomics data[J]. Metabolomics, 2014, 10(3): 361-374. doi: 10.1007/s11306-013-0598-6
[29] Bais B P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233-266. doi: 10.1146/annurev.arplant.57.032905.105159
[30] Mhlongo M I, Piater L A, Madala N E, et al. The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance[J]. Frontiers in Plant Science, 2018, 9: 112. doi: 10.3389/fpls.2018.00112
[31] Smith K E, Schwab A P, Banks M K, et al. Dissipation of PAHs in saturated, dredged sediments: A field trial[J]. Chemosphere, 2008, 72(10): 1614-1619. doi: 10.1016/j.chemosphere.2008.03.020
[32] 刘世亮, 骆永明, 吴龙华, 等. 污染土壤中苯并[a]芘的微生物共代谢修复研究[J]. 土壤学报, 2010, 47(2):364-369. doi: 10.11766/trxb2010470223
[33] 吴 颖, 梁月荣. S-腺苷甲硫氨酸在茶树生理代谢中的研究现状[J]. 茶叶, 2005, 2:18-20.
[34] Shen Y, Li J, Gu R, et al. Carotenoid and superoxide dismutase are the most effective antioxidants participating in ROS scavenging in phenanthrene accumulated wheat leaf[J]. Chemosphere, 2018, 197: 513-525. doi: 10.1016/j.chemosphere.2018.01.036
[35] 张建锋, 李吉跃, 宋玉民, 等. 植物耐盐机理与耐盐植物选育研究进展[J]. 世界林业研究, 2003, 16(2):16-22. doi: 10.3969/j.issn.1001-4241.2003.02.004
[36] Ma X, Li X, Liu J, et al. Enhancing Salix viminalis L. –mediated phytoremediation of polycyclic aromatic hydrocarbon–contaminated soil by inoculation with Crucibulum laeve (white-rot fungus). Environmental Science and Pollution Research , 2020 , 27: 41326 – 41341. DOI: 10.1007/s11356-020-10125-3
[37] Ma X, Li X, Liu J, et al. Soil microbial community succession and interactions during combined plant/white-rot fungus remediation of polycyclic aromatic hydrocarbons. Science of The Total Environment , 2021 , 752: 142224. DOI: 10.1016/j.scitotenv.2020.142224