[1] BARBER V A, JUDAY G P, FINNEY B P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress[J]. Nature, 2000, 405: 668-673. doi: 10.1038/35015049
[2] KUNERT N. Preliminary indications for diverging heat and drought sensitivities in Norway spruce and Scots pine in Central Europe[J]. iForest, 2020, 13(2): 89-91. doi: 10.3832/ifor3216-012
[3] VITALI V, BÜNTGEN U, BAUHUS J. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south‐western Germany[J]. Global Change Biology, 2017, 23(12): 5108-5119. doi: 10.1111/gcb.13774
[4] MATKALA L, KULMALA L, KOLARI P, et al. Resilience of subarctic Scots pine and Norway spruce forests to extreme weather events[J]. Agricultural and Forest Meteorology, 2021, 296: 108239. doi: 10.1016/j.agrformet.2020.108239
[5] ZHANG X W, WANG J R, JI M F, et al. Higher thermal acclimation potential of respiration but not photosynthesis in two alpine picea taxa in contrast to two lowland congeners[J]. PLoS ONE, 2015, 10(4): e0123248. doi: 10.1371/journal.pone.0123248
[6] CHEN L, HUANG J G, STADT K J, et al. Drought explains variation in the radial growth of white spruce in western Canada[J]. Agricultural & Forest Meteorology, 2017, 233: 133-142.
[7] KOLAR T, CERMAK P, TRNKA M, et al. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe[J]. Agricultural & Forest Meteorology, 2017, 239: 24-33.
[8] ŠIJAČIĆ-NIKOLIĆ M, MILOVANOVIĆ J, MARINA N. Forests of Southeast Europe Under a Changing Climate. Conservation of Genetic Resources[M]. Cham, Switzerland: Springer, 2019: 353-371.
[9] TJOELKER M G, BORATYNSKI A, BUGALA W. Biology and ecology of Norway spruce[M]. Dordrecht, Netherlands: Springer , 2007: 23-25.
[10] RAO K V M, RAGHAVENDRA A S, REDDY K J. Physiology and molecular biology of stress tolerance in plants[M]. Dordrecht, Netherlands: Springer, 2006: 101–129.
[11] MATHUR S, AGRAWAL D, JAJOO A. Photosynthesis: Response to high temperature stress[J]. Journal of Photochemistry and Photobiology B:Biology, 2014, 137: 116-126. doi: 10.1016/j.jphotobiol.2014.01.010
[12] HÜVE K, BICHELE I, RASULOV B, et al. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation[J]. Plant, Cell & Environment, 2011, 34(1): 113-126.
[13] YAMAMOTO Y. Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids[J]. Frontiers in Plant Science, 2016, 7: 1136.
[14] TABBUSH P M. Rough handling, soil temperature, and root development in outplanted Sitka spruce and douglas-fir[J]. Canadian Journal of Forest Research, 1986, 16(6): 1385-1388. doi: 10.1139/x86-247
[15] SHEKHAWAT K, ALMEIDA-TRAPP M, GARCÍA-RAMÍREZ G X, et al. Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance[J]. Trends Plant Science, 2022, 27(8): 802-813. doi: 10.1016/j.tplants.2022.02.008
[16] BIGRAS F J. Selection of white spruce families in the context of climate change: heat tolerance[J]. Tree Physiology, 2000, 20(18): 1227-1234. doi: 10.1093/treephys/20.18.1227
[17] ZHANG X, CHEN L, WANG J, et al. Photosynthetic acclimation to long-term high temperature and soil drought stress in two spruce species (Picea crassifolia and P. wilsonii) used for afforestation[J]. Journal of Forestry Research (Harbin), 2018, 29(2): 363-372. doi: 10.1007/s11676-017-0468-6
[18] 贾子瑞, 王 亚, 马建伟, 等. 欧洲云杉PSⅡ的热稳定性对温度升高的响应[J]. 林业科学, 2020, 56(7):22-32. doi: 10.11707/j.1001-7488.20200703
[19] SONG Y P, CHEN Q Q, CI D, et al. Effects of high temperature on photosynthesis and related gene expression in Poplar[J]. BMC Plant Biology, 2013, 14: 111.
[20] OUYANG F, MA J, WANG J, et al. Picea species from humid continental and temperate marine climates perform better in monsoonal areas of middle latitudes of China[J]. Journal of Forestry Research, 2021, 32(4): 1395-1408. doi: 10.1007/s11676-020-01209-4
[21] PAPAGEORGIOU, G C, GOVINDJEE. Chlorophyll a Fluorescence: A Signature of Photosynthesis[M]. Dordrecht, Netherlands: Springer, 2004: 321-362.
[22] KLUGHAMMER C, SCHREIBER U. Saturation Pulse method for assessment of energy conversion in PSI[J]. PAM Application Notes, 2008, 1: 11-14.
[23] WAY D A, OREN R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data[J]. Tree Physiology, 2010, 30: 669-688. doi: 10.1093/treephys/tpq015
[24] DANBY R K, HIK D S. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine tree line[J]. Global Change Biology, 2007, 13(2): 437-451. 10.1111/j. 1365-2486.2006. 01302. x
[25] DAY M E. Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce (Picea rubens)[J]. Tree Physiology, 2000, 20(1): 57-63. doi: 10.1093/treephys/20.1.57
[26] WAY D A, SAGE R F. Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B. S. P.][J]. Global Change Biol., 2008, 14(3): 624-636. doi: 10.1111/j.1365-2486.2007.01513.x
[27] ALTMAN J, FIBICH P, SANTRUCKOVA H, et al. Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe[J]. Science of the Total Environment, 2017, 609: 506-516. doi: 10.1016/j.scitotenv.2017.07.134
[28] WAY D A, SAGE R F. Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill. ) B. S. P. ][J]. Plant Cell Environ, 2008, 31(9): 1250-1262. doi: 10.1111/j.1365-3040.2008.01842.x
[29] 杨 毅. 中国云杉属主要物种光系统Ⅱ热稳定性研究[D]. 兰州: 兰州大学, 2017.
[30] PATTERSON T B, GUY R D, DANG Q L. Whole-plant nitrogenand water-relations traits, and their associated trade-offs, in adjacent muskeg and upland boreal spruce species[J]. Oecologia, 1997, 110(2): 160-168. doi: 10.1007/s004420050145
[31] 刘春来, 王现领. 几种降温措施对玻璃温室内温度影响研究[J]. 农业与技术, 2018, 38(24):9-11.
[32] BÜNTGEN U, KRUSIC P J, PIERMATTEI A, et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming[J]. Nat Commun, 2019, 10: 2171. doi: 10.1038/s41467-019-10174-4
[33] ADAMS H D, GUARDIOLA-CLARAMONTE M, BARRON-GAFFORD G A, et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(17): 7063-7066. doi: 10.1073/pnas.0901438106
[34] VANN D R, JOHNSON A H, CASPER B B. Effects of elevated temperatures on carbon dioxide exchange in Picea rubens[J]. Tree Physiology, 1994, 14: 1339-1349. doi: 10.1093/treephys/14.12.1339
[35] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. doi: 10.1016/j.foreco.2009.09.001
[36] COLOMBO S J. AND TIMMER V R. Limits of tolerance to high temperature causing direct and indirect damage to black spruce[J]. Tree Pyhsiology, 1992, 11(1): 95-104. doi: 10.1093/treephys/11.1.95
[37] LIU J, SHI D C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress[J]. Photosynthetica, 2010, 48(1): 127-134. doi: 10.1007/s11099-010-0017-4
[38] MURATA N, TAKAHASHI S, NISHIYAMA Y, et al. Photoinhibition of photosystem II under environmental stress[J]. Biochimica et biophysica acta, 2007, 1767(6): 414-421. doi: 10.1016/j.bbabio.2006.11.019
[39] ALLAKHVERDIEV S I, LOS D A, MOHANTY P, et al. Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition[J]. Biochim Biophys Acta Bioenerg, 2007, 1767(12): 1363-1371. doi: 10.1016/j.bbabio.2007.10.005
[40] MAXWELL K, JOHNSON G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000, 51(345): 659-668. doi: 10.1093/jexbot/51.345.659
[41] BJÖRKMAN O, DEMMIG B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins[J]. Planta, 1987, 170: 489-504. doi: 10.1007/BF00402983
[42] BAKER N R, ROSENQVIST E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities[J]. Journal of Experimental Botany, 2004, 55(403): 1607-1621. doi: 10.1093/jxb/erh196
[43] KRAUSE G H, WEIS E. Chlorophyll Fluorescence and Photosynthesis: The Basics[J]. Annual Review of Plant Physiology, 1991, 42(1): 313-349. doi: 10.1146/annurev.pp.42.060191.001525
[44] LAMONTAGNE M, BIGRAS F J, MARGOLIS H A. Chlorophyll fluorescence and CO2 assimilation of black spruce seedlings following frost in different temperature and light conditions[J]. Tree Pyhsiology, 2000, 20(4): 249-255. doi: 10.1093/treephys/20.4.249
[45] KONÔPKOVÁ A, KURJAK D, KMEŤ J, et al. Differences in photochemistry and response to heat stress between silver fir (Abies alba Mill. ) provenances[J]. Trees, 2018, 32(1): 73-86. doi: 10.1007/s00468-017-1612-9
[46] Wang L J, Fan L, Loescher W, et al. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves[J]. BMC Plant Biol, 2010, 10: 34. doi: 10.1186/1471-2229-10-34
[47] JIN S H, LI X Q, HU J Y, et al. Cyclic electron flow around photosystem I is required for adaptation to high temperature in a subtropical forest tree, Ficus concinna[J]. Journal of Zhejiang University SCIENCE B, 2009, 10(10): 784-790. doi: 10.1631/jzus.B0820348
[48] SHARKEY T D, ZHANG R. High temperature effects on electron and proton circuits of photosynthesis[J]. Journal of Integrative Plant Biology, 2010, 52(8): 712-722. doi: 10.1111/j.1744-7909.2010.00975.x
[49] NUIJS A M, SHURVALOV V A, GORKOM H J V, et al. Picosecond absorbance difference spectroscopy on the primary reactions and the antenna-excited states in photosystem I particles[J]. Biochim Biophys Acta, 1986, 850(2): 310-318. doi: 10.1016/0005-2728(86)90186-6
[50] SONOIKE K. Photoinhibition of photosystem I[J]. Physiologia Plantarum, 2011, 142(1): 56-64. doi: 10.1111/j.1399-3054.2010.01437.x