[1] 叶建仁, 贺 伟. 林木病理学[M]. 北京: 中国林业出版社, 2011: 224-227.
[2] 唐 旭. 松枯梢病拮抗细菌的筛选及其抗病机制初探[D]. 南京: 南京林业大学, 2017.
[3] 满晓国. 松树枯梢病的发生原因及防治技术[J]. 农村实用科技信息, 2014(1):30.
[4] 张 铭, 谢 宪, 梁 军, 等. 赤松枯梢病生防真菌M75的筛选和鉴定[J]. 东北林业大学学报, 2022, 50(4):78-82. doi: 10.3969/j.issn.1000-5382.2022.04.013
[5] Zhong K, Wang Q. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology[J]. Carbohydrate Polymers, 2010, 80(1): 19-25. doi: 10.1016/j.carbpol.2009.10.066
[6] 张广臣, 雷 虹, 何 欣, 等. 微生物发酵培养基优化中的现代数学统计学方法[J]. 食品与发酵工业, 2010, 36(5):110-113.
[7] Lee S, Bae H, Kim N, et al. Optimization of growth conditions of Lentinus edodes mycelium on corn processing waste using response surface analysis[J]. Journal of Bioscience and Bioengineering, 2008, 105(2): 161-163.
[8] 郭才南, 安佰义, 韩櫂濂, 等. 应用响应面法优化提取白檀果实花色苷工艺[J]. 东北林业大学学报, 2020, 48(7):98-102. doi: 10.3969/j.issn.1000-5382.2020.07.019
[9] Priyadharshini S D, Bakthavatsalam A K. Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett–Burman design and response surface methodology[J]. Bioresource Technology, 2016, 207: 150-156. doi: 10.1016/j.biortech.2016.01.138
[10] Chen Q H, He G Q, Ali M. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology[J]. Enzyme & Microbial Technology, 2002, 30(5): 667-672.
[11] 李 鹏, 陈秀珍, 庄文颖. 高产纤维素酶的拟康宁木霉菌株8985固态发酵条件优化[J]. 菌物学报, 2021, 40(4):743-758.
[12] 卢 超, 陈景鲜, 王国霞, 等. 枯草芽孢杆菌L07产中性蛋白酶发酵条件优化[J]. 食品与发酵工业, 2020, 46(16):148-153.
[13] Sharma S, Malik A, Satya S. Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr (VI) removal by Aspergillus lentulus AML05[J]. Journal of Hazardous Materials, 2009, 164(2-3): 1198-1204. doi: 10.1016/j.jhazmat.2008.09.030
[14] Soliman N A, Berekaa M M, Abdel-Fattah Y R. Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett-Burman experimental design to evaluate culture requirements.[J]. Applied Microbiology & Biotechnology, 2005, 69(3): 259-267.
[15] Chan L, Bai J, Cai Z, et al. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology[J]. Journal of Biotechnology, 2002, 93(1): 27-34. doi: 10.1016/S0168-1656(01)00377-7
[16] 李晓艳, 于 爽, 窦少华, 等. 植物乳杆菌CLP0279产低温超氧化物歧化酶发酵条件的优化[J]. 微生物学通报, 2016, 43(10):2314-2320.
[17] 屈海峰, 白殿国, 于占春, 等. 中心组合响应面优化里氏木霉B4菌产纤维素酶培养基组成研究[J]. 化工科技, 2016, 24(6):29-33. doi: 10.3969/j.issn.1008-0511.2016.06.007
[18] Thys R C, Guzzon S O, Cladera-Olivera F, et al. Optimization of protease production by Microbacterium sp. in feather meal using response surface methodology[J]. Process Biochemistry, 2006, 41(1): 67-73. doi: 10.1016/j.procbio.2005.03.070
[19] 张昊月, 郭正彦, 吕志堂, 等. 应用响应面法优化发酵培养基提高达托霉素产量[J]. 微生物学通报, 2021, 48(01):113-122.
[20] 周 喻, 吴文惠, 苏同伟, 等. 响应面法优化海洋镰刀腐皮菌产出HMG-CoA还原酶抑制剂的培养条件[J]. 微生物学通报, 2014, 41(8):1516-1524.
[21] Betiku E, Taiwo A E. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network[J]. Renewable Energy, 2015, 74: 87-94. doi: 10.1016/j.renene.2014.07.054
[22] 刘小杰, 何国庆, 陈启和. 康氏木霉 ZJ5 纤维素酶发酵培养基的优化[J]. 浙江大学学报:工学版, 2003, 37(5):623-628.