[1] Kimberley M, West G, Dean M, et al. The 300 index- a volume productivity index for radiata pine[J]. New Zealand Journalof Forestry, 2005, 50(2): 13-18.
[2] Filippo A D, Alessandrini A, Biondi F, et al. Climate change and oak growth decline: dendroecology and stand productivity of a turkey oak (Quercus cerris L.) old stored coppice in central Italy[J]. Annals of Forest Science, 2010, 67(7): 1-14.
[3] Patrick V, Agricultural P T J, Meteorology F. Coupling transversal and longitudinal models to better predict Quercus petraea and Pinus sylvestris stand growth under climate change[J]. Agriculturaland Forest Meteorology, 2018, 263: 258-266. doi: 10.1016/j.agrformet.2018.08.021
[4] 汪 玮, 孟 伟. 不同立地因子对杉木蓄积量的影响[J]. 热带林业, 2017, 45(3):23-26. doi: 10.3969/j.issn.1672-0938.2017.03.007
[5] 郭光智, 段爱国, 张建国. 南亚热带杉木林分蓄积量生长立地与密度效应[J]. 林业科学研究, 2019, 32(4):19-25.
[6] Zhang X, Wang Z, Chhin S, et al. Relative contributions of competition, stand structure, age, and climate factors to tree mortality of Chinese fir plantations: long-term spacing trials in southern China[J]. Forest Ecology and Management, 2020, 465: 118103. doi: 10.1016/j.foreco.2020.118103
[7] 刘世荣, 徐德应. 气候变化对中国森林生产力的影响[J]. 林业科学研究, 1994, 7(4):425-430. doi: 10.3321/j.issn:1001-1498.1994.04.011
[8] Toledo M, Poorter L, Peña-Claros M, et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance[J]. Journal of Ecology, 2011, 99(1): 254-264. doi: 10.1111/j.1365-2745.2010.01741.x
[9] Zhang J, Huang S, He F. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 4009-4014. doi: 10.1073/pnas.1420844112
[10] Pricea D T, Cookea B J, Metsarantaa J M, et al. If forest dynamics in Canada's west are driven mainly by competition, why did they change? Half-century evidence says: Climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(32): 1-1.
[11] 何理深, 张 超. 云南松林分蓄积量的影响因子分析[J]. 西南林业大学学报, 2019, 39(6):116-122. doi: 10.11929/j.swfu.201903084
[12] Raftery A E, Madigan D, Volinsky C T. Accounting for model uncertainty in survival analysis improves predictive performance (with Discussion).[M]// Bernardo J M, Berger J O, Dawid A P, et al. Bayesian Statistics 5. Oxford University Press: Oxford, U.K., 1995: 323-349.
[13] Raftery A E, Madigan D, Hoeting J A. Bayesian model averaging for linear regression models[J]. Journal of the American Statistical Association, 1991, 92(437): 179-191.
[14] Draper D. Assessment and propagation of model uncertainty[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1995, 57(1): 45-70. doi: 10.1111/j.2517-6161.1995.tb02015.x
[15] Viallefont V, Raftery A S. Variable selection and Bayesian model averaging in case-control studies[J]. Statistics in Medicine, 2001, 20(21): 3215–3230.
[16] 张志杰, 彭文祥, 周艺彪, 等. 贝叶斯模型平均法的基本原理及其在logistic回归中的应用实例[J]. 中国卫生统计, 2007, 24(5):467-471. doi: 10.3969/j.issn.1002-3674.2007.05.006
[17] Picard N, Henry M, Mortier F, et al. Using Bayesian model averaging to predict tree aboveground biomass in tropical moist forests[J]. Forest Science, 2012, 58(1): 15-23. doi: 10.5849/forsci.10-083
[18] 罗剑锋. 贝叶斯平均模型及其在医学研究中的应用探索[D]. 上海: 复旦大学, 2003.
[19] 颜薪瞩. 贝叶斯模型平均法及其在宏观经济预测中的应用[D]. 北京: 北京理工大学, 2016.
[20] Bullock B P, Boone E L. Deriving tree diameter distributions using Bayesian model averaging[J]. Forest Ecology and Management, 2007, 242(2-3): 127-132. doi: 10.1016/j.foreco.2007.01.024
[21] Zhang X, Duan A, Dong L, et al. The application of Bayesian model averaging in compatibility of stand basal area for even-aged plantations in southern China[J]. Forest Science, 2014, b, 60(4): 645-651.
[22] 张雄清, 张建国, 段爱国. 杉木人工林林分断面积生长模型的贝叶斯法估计[J]. 林业科学研究, 2015, 28(4):538-542. doi: 10.3969/j.issn.1001-1498.2015.04.013
[23] Lu L, Wang H, Chhin S, et al. A Bayesian Model Averaging approach for modelling tree mortality in relation to site, competition and climatic factors for Chinese fir plantations[J]. Forest Ecology and Management, 2019, 440: 169-177. doi: 10.1016/j.foreco.2019.03.003
[24] Wang T, Hamann A, Spittlehouse D L, et al. Climate WNA—high-resolution spatial climate data for western North America[J]. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16-29. doi: 10.1175/JAMC-D-11-043.1
[25] Kass R E, Rafter A E. Bayes factors[J]. Journal of the American Statistical Association, 1995, 90(430): 773-795.
[26] Clyde M, Ghosh J, Littman M. Bayesian adaptive sampling for variable selection and model averaging[J]. Journal of Computational Graphics and Statistics, 2010, 20(1): 80-101.
[27] Zellner A, Siow A. “Posterior odds ratios for selected regression hypotheses, ” in Bayesian Statistics[C]//. BernardoJ M, DeGrootM H, Lindley D V, et al. Proceedings of the First International Meeting Held in Valencia, Valencia, Spain: University of Valencia Press, 1980, 585-603.
[28] Raftery A E. Approximate Bayes factors and accounting for model uncertainty in generalised linear models[J]. Biometrika, 1996, 83(2): 251-266. doi: 10.1093/biomet/83.2.251
[29] Raftery A E, Painter I S, Volinsky C T. BMA: an R package for Bayesian model averaging[J]. R News, 2005, 5(1): 2-8.
[30] Genell A, Nemes S, Steineck G, et al. Model selection in medical research: a simulation study comparing Bayesian model averaging and stepwise regression[J]. BMC Medical Research Methodology, 2010, 10(1): 108. doi: 10.1186/1471-2288-10-108
[31] Madigan D, Raftery A E. Model selection and accounting for model uncertainty in Graphical Models using Occam's Window[J]. Journal of the American Statistical Association, 89 (428):, 1994: 111-196.
[32] 张雄清, 张建国, 段爱国. 基于贝叶斯法估计杉木人工林树高生长模型的研究[J]. 林业科学, 2014, 50(3):69-75.
[33] Zapata-Cuartas M, Sierra C A, Alleman L. Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass[J]. Forest Ecologyand Management, 2012, 277(4): 173-179.
[34] Wang M, Liu Q, Fu L, et al. Airborne LIDAR-derived aboveground biomass estimates using a hierarchical Bayesian approach[J]. Remote Sensing, 2019, 11(9): 1050. doi: 10.3390/rs11091050
[35] 王少杰, 邓华锋, 向 玮, 等. 基于混合模型的油松林分蓄积量预测模型的建立[J]. 西北农林科技大学学报: 自然科学版, 2018, 46(2):29-38.
[36] 周 梅, 李春干. 采用林分平均高和密度估计人工林蓄积量[J]. 广西林业科学, 2017, 46(3):319-324. doi: 10.3969/j.issn.1006-1126.2017.03.019
[37] 毛碧辉, 吕成群, 黄宝灵, 等. 不同造林密度对泡桐幼林生长和林分蓄积量的影响[J]. 安徽农业科学, 2018, 46(20):102-105. doi: 10.3969/j.issn.0517-6611.2018.20.031
[38] 王玉芬. 林分密度在营林生产中的应用[J]. 林业勘查设计, 2011(1):59-63.
[39] 刘新亮, 章 挺, 邱凤英, 等. 造林密度对材用樟树幼林生长和蓄积量的影响[J]. 中南林业科技大学学报, 2019, 39(3):28-32.
[40] 贾亚运, 何宗明, 周丽丽, 等. 造林密度对杉木幼林生长及空间利用的影响[J]. 生态学杂志, 2016, 35(5):1177-1181.
[41] Zhang X, Cao Q V, Duan A, et al. Modeling tree mortality in relation to climate, initial planting density and competition in Chinese fir plantations using a Bayesian logistic multilevel method[J]. Canadian Journal of Forest Research, 2017, 47(9): 1278-1285. doi: 10.1139/cjfr-2017-0215
[42] 高露双, 王晓明, 赵秀海. 长白山阔叶红松林共存树种径向生长对气候变化的响应[J]. 北京林业大学学报, 2013, 35(3):24-31.