[1] GREB T, LOHMANN J U. Plant stem cells[J]. Current Biology, 2016, 26(17): R816-R821. doi: 10.1016/j.cub.2016.07.070
[2] WANG G F, GAO Y F, YANG L W, et al. Identification and analysis of differentially expressed genes in differentiating xylem of Chinese fir (Cunninghamia lanceolata) by suppression subtractive hybridization[J]. Genome, 2007, 50(12): 1141-1155. doi: 10.1139/G07-091
[3] CARVALHO A, PAIVA J, LOUZADA J, et al. The transcriptomics of secondary growth and wood formation in conifers[J]. Molecular Biology International, 2013, 2013: 74324.
[4] PETIT G, CRIVELLARO A. Comparative axial widening of phloem and xylem conduits in small woody plants[J]. Trees, 2014, 28(3): 915-921. doi: 10.1007/s00468-014-1006-1
[5] SCHMID R. Review: [Untitled]: Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development[J]. Taxon, 2008, 57(2): 678.
[6] 许会敏, 王 莉, 曹德昌, 等. 维管形成层活动周期调控研究进展[J]. 科学通报, 2015, 60(7):619-629.
[7] CHEN H M, HAN J J, CUI K M, et al. Modification of cambial cell wall architecture during cambium periodicity in Populus tomentosa Carr[J]. Trees, 2010, 24(3): 533-540. doi: 10.1007/s00468-010-0424-y
[8] ROSSI S, DESLAURIERS A, ANFODILLO T, et al. Age-dependent xylogenesis in timberline conifers[J]. The New Phytologist, 2008, 177(1): 199-208. doi: 10.1111/j.1469-8137.2007.02235.x
[9] HACKE U G, JACOBSEN A L, PRATT R B. Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis[J]. Plant, Cell & Environment, 2009, 32(10): 1324-1333.
[10] DOMEC J C, GARTNER B L. How do water transport and water storage differ in coniferous earlywood and latewood?[J]. Journal of Experimental Botany, 2002, 53(379): 2369-2379. doi: 10.1093/jxb/erf100
[11] GUO Y Y, XU H M, WU H Y, et al. Seasonal changes in cambium activity from active to dormant stage affect the formation of secondary xylem in Pinus tabulaeformis Carr[J]. Tree Physiology, 2021, 42(3): 585-599.
[12] LLOYD J A. Distribution of extractives in Pinus radiata earlywood and latewood[J]. New Zealand Journal of Forestry Science, 1978, 8(2): 288-294.
[13] BERTAUD F, HOLMBOM B. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood[J]. Wood Science and Technology, 2004, 38(4): 245-256.
[14] SHI J T, XIA C Y, PENG J Y, et al. Cellular and Metabolite Changes in the Secondary Phloem of Chinese Fir (Cuninghamia lanceolata (Lamb. ) Hook. ) during Dormancy Release[J]. Forests, 2021, 12(11): 1552-1552. doi: 10.3390/f12111552
[15] HONG Y, WU H M, XU H Y, et al. Seasonal development of cambial activity in relation to xylem formation in Chinese fir[J]. Journal of Plant Physiology, 2016, 195: 23-30. doi: 10.1016/j.jplph.2015.12.013
[16] XUE L, HAGIHARA A. Growth analysis on the competition–density effect in Chinese fir (Cunninghamia lanceolata) and Masson pine (Pinus massoniana) stands[J]. Forest Ecology and Management, 2001, 150(3): 331-337. doi: 10.1016/S0378-1127(00)00583-1
[17] XUE L, LIE G, LU G, et al. Allometric scaling among tree components in Pinus massoniana stands with different sites[J]. Ecological Research, 2013, 28(2): 327-333. doi: 10.1007/s11284-012-1021-x
[18] 骆 晶, 文晓鹏, 李正春, 等. 马尾松高低产脂种质树脂道解剖结构比较[J]. 西南大学学报(自然科学版), 2020, 42(6):31-37. doi: 10.13718/j.cnki.xdzk.2020.06.004
[19] LI A, WANG Y, WU H. Initiation and development of resin ducts in the major organs of Pinus massoniana[J]. Frontiers of Forestry in China, 2009, 4(4): 501-507. doi: 10.1007/s11461-009-0061-z
[20] 耿世磊, 吴玉荷, 赵 晟, 等. 马尾松茎初生树脂道发生和发育研究[J]. 华南农业大学学报, 2000,21(3):44-47. doi: 10.3969/j.issn.1001-411X.2000.03.012
[21] 赵 猛, 亢 晶. 漆树科4种植物次生韧皮部的解剖比较[J]. 林业科学, 2019, 55(6):167-175. doi: 10.11707/j.1001-7488.20190620
[22] COSGROVE DANIEL J. Growth of the plant cell wall[J]. Nature Reviews. Molecular Cell Biology, 2005, 6(11): 850-861. doi: 10.1038/nrm1746
[23] ROSNER S, KARLSSON B. Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood[J]. Trees, 2011, 25(2): 289-299. doi: 10.1007/s00468-010-0505-y
[24] ZHAO Q, DIXON R A. Transcriptional networks for lignin biosynthesis: more complex than we thought?[J]. Trends in Plant Science, 2011, 16(4): 227-233. doi: 10.1016/j.tplants.2010.12.005
[25] GIBSON A C, CALKIN H W, NOBEL P S. Hydraulic conductance and xylem structure in tracheid-bearing plants[J]. IAWA Journal, 1985, 6(4): 293-302. doi: 10.1163/22941932-90000957
[26] GIBSON A C, CALKIN H W, NOBEL P S. Xylem anatomy, water flow, and hydraulic conductance in the fern cyrtomium falcatum[J]. American Journal of Botany, 1984, 71(4): 564-574. doi: 10.1002/j.1537-2197.1984.tb12542.x
[27] DOMEC J C, MEINZER F C, LACHENBRUCH B, et al. Dynamic variation in sapwood specific conductivity in six woody species[J]. Tree Physiology, 2007, 27(10): 1389-1400. doi: 10.1093/treephys/27.10.1389
[28] ČUFAR K, CHERUBINI M, GRIČAR J, et al. Xylem and phloem formation in chestnut (Castanea sativa Mill. ) during the 2008 growing season[J]. Dendrochronologia, 2011, 29(3): 127-134. doi: 10.1016/j.dendro.2011.01.006
[29] PARK J H, CHOI E B, PARK H C, et al. Intra-annual dynamics of cambial and xylem phenology in subalpine conifers at Deogyusan National Park in the Republic of Korea[J]. Journal of Wood Science, 2021, 67(1): 1-10. doi: 10.1186/s10086-020-01935-7
[30] KAACK L, ALTANER C M, CARMESIN C, et al. Function and three-dimensional structure of intervessel pit membranes in angiosperms: a review[J]. IAWA Journal, 2019, 40(4): 673-702. doi: 10.1163/22941932-40190259