[1] 王文杰, 孙 伟, 邱 岭, 等. 不同时间尺度下兴安落叶松树干液流密度与环境因子的关系[J]. 林业科学, 2012, 48(1):77-85. doi: 10.11707/j.1001-7488.20120113
[2] Chapin F S, Matson P A, Vitousek P. Principles of terrestrial ecosystem ecology[M]. New York: Springer, 2011.
[3] 王 媛, 魏江生, 周 梅, 等. 大兴安岭南段白桦树干液流对土壤水分的响应[J]. 水土保持研究, 2020, 27(4):128-133. doi: 10.13869/j.cnki.rswc.2020.04.017
[4] 赵 平, 饶兴权, 马 玲, 等. Granier树干液流测定系统在马占相思的水分利用研究中的应用[J]. 热带亚热带植物学报, 2005, 13(6):5-16.
[5] 张 璇, 张会兰, 王玉杰, 等. 缙云山典型树种树干液流径向变化及单株日蒸腾量估算[J]. 水土保持学报, 2016, 30(3):337-343.
[6] 李振华, 王彦辉, 于澎涛, 等. 华北落叶松液流速率的优势度差异及其对林分蒸腾估计的影响[J]. 林业科学研究, 2015, 28(1):8-16.
[7] 王志超, 许宇星, 竹万宽, 等. 雷州半岛尾叶桉和湿加松人工林的蒸腾耗水规律[J]. 生态学报, 2019, 39(6):2147-2155.
[8] 韩 辉, 张学利, 党宏忠, 等. 沙地赤松树干边材液流速率的方位特征研究[J]. 林业科学研究, 2019, 32(2):39-45. doi: 10.13275/j.cnki.lykxyj.2019.02.006
[9] Dang H Z, Zha T S, Zhang J S, et al. Radial profile of sap flow velocity in mature Xinjiang poplar (Populus alba L. var. pyramidalis) in Northwest China[J]. Journal of Arid Land, 2014, 6(5): 612-627. doi: 10.1007/s40333-014-0007-7
[10] 党宏忠, 杨文斌, 李 卫, 等. 民勤绿洲二白杨树干液流的径向变化及时滞特征[J]. 应用生态学报, 2014, 25(9):2501-2510. doi: 10.13287/j.1001-9332.20140627.001
[11] Tomonori K, Kyoichi O, Du S, et al. Spatial variation in sap flow velocity in semiarid region trees: its impact on stand-scale transpiration estimates[J]. Hydrological Processes, 2012, 26(8): 1161-1168. doi: 10.1002/hyp.8205
[12] Bodo A V, Arain M A. Radial variations in xylem sap flux in a temperate red pine plantation forest[J]. Ecological Processes, 2021, 10(1): 1-9. doi: 10.1186/s13717-020-00255-4
[13] Tateishi M, Kumagai T, Utsumi Y, et al. Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations[J]. Trees, 2008, 22(1): 23-30. doi: 10.1007/s00468-007-0165-8
[14] Bush S E, Hultine K R, Sperry J S, et al. Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees[J]. Tree Physiology, 2010, 30(12): 1545-1554. doi: 10.1093/treephys/tpq096
[15] 徐 飞, 杨风亭, 王辉民, 等. 树干液流径向分布格局研究进展[J]. 植物生态学报, 2012, 36(9):1004-1014.
[16] Nadezhdina N, Čermák J, Ceulemans R. Radial patterns of sap flow in woody stems of dominant and understory species: Scaling errors associated with positioning of sensors[J]. Tree Physiology, 2002, 22(13): 907-918. doi: 10.1093/treephys/22.13.907
[17] 黄国勤, 赵其国. 广西桉树种植的历史、现状、生态问题及应对策略[J]. 生态学报, 2014, 34(18):5142-5152.
[18] Zhou G Y, Huang Z H, Jim M, et al. Radial variation in sap flux density as a function of sap wood thickness in two eucalyptus (Eucalyptus urophylla) plantations[J]. Acta Botanica Sinica, 2002, 44(12): 1418-1424.
[19] 周翠鸣, 黄玉清, 顾大形, 等. 尾巨桉树干木质部液流密度径向变化特征[J]. 生态学杂志, 2015, 34(8):2103-2108. doi: 10.13292/j.1000-4890.2015.0170
[20] LY/T 2909—2017, 桉树大径材培育技术规程[S].
[21] 周翠鸣, 顾大形, 赵 平, 等. 液流径向变化对尾巨桉单株日蒸腾量估算的影响[J]. 应用生态学报, 2017, 28(8):2445-2451. doi: 10.13287/j.1001-9332.201708.032
[22] 王志超, 许宇星, 竹万宽, 等. 雷州半岛尾巨桉人工林树干液流对台风天气的响应[J]. 林业科学研究, 2017, 30(4):679-684. doi: 10.13275/j.cnki.lykxyj.2017.04.021
[23] 孙振伟, 赵 平, 牛俊峰, 等. 外来引种树种大叶相思和柠檬桉树干液流和蒸腾耗水的季节变异[J]. 生态学杂志, 2014, 33(10):2588-2595. doi: 10.13292/j.1000-4890.2014.0218
[24] 罗 浩, 齐锦秋, 谢九龙, 等. 四川蓝桉幼龄材解剖性质及其变异规律[J]. 西北农林科技大学学报(自然科学版), 2015, 43(2):106-112,119.
[25] Zhu S D, Song J J, Li R H, et al. Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests[J]. Plant, Cell & Environment, 2013, 36(4): 879-891.
[26] Spicer R, Gartner B L. The effects of cambial age and position within the stem on specific conductivity in Douglas-fir (Pseudotsuga menziesii) sapwood[J]. Trees, 2001, 15(4): 222-229. doi: 10.1007/s004680100093
[27] Jiménez M S, Nadezhdina N, Čermák J, et al. Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands[J]. Tree Physiology, 2000, 20(17): 1149-1156. doi: 10.1093/treephys/20.17.1149
[28] Flora A, Cescatti A. Vertical foliage distribution determines the radial pattern of sap flux density in Picea abies[J]. Tree Physiology, 2008, 28(9): 1317-1323. doi: 10.1093/treephys/28.9.1317
[29] 王城城, 陈丽艳, 赵从举. 热带桉树人工林液流特征及其对环境因子的响应[J]. 灌溉排水学报, 2019, 38(7):69-75. doi: 10.13522/j.cnki.ggps.20190080
[30] Zhang J G, He Q Y, Shi W Y, et al. Radial variations in xylem sap flow and their effect on whole-tree water use estimates[J]. Hydrological Processes, 2015, 29(24): 4993-5002. doi: 10.1002/hyp.10465
[31] 吕同汝, 蒋勇军, 吴 泽, 等. 亚热带岩溶区典型常绿和落叶树种的蒸腾特征及其对环境因子的响应[J]. 生态学报, 2022, 42(3):1047-1058.
[32] Ford C R, Goranson C E, Mitchell R J, et al. Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees[J]. Tree Physiology, 2004, 24(9): 951-960. doi: 10.1093/treephys/24.9.951
[33] Nadezhdina N, Nadezhdin V, Ferreira M I, et al. Variability with xylem depth in sap flow in trunks and branches of mature olive trees[J]. Tree Physiology, 2007, 27(1): 105-113. doi: 10.1093/treephys/27.1.105
[34] Van de Wal BAE, Guyot A, Lovelock C E, et al. Influence of temporospatial variation in sap flux density on estimates of whole-tree water use in Avicennia marina[J]. Trees, 2015, 29(1): 215-222. doi: 10.1007/s00468-014-1105-z
[35] 赵英伟, 邱炳发, 彭智邦, 等. 间伐对培育桉树大径材的影响及其经济效益分析[J]. 桉树科技, 2021, 38(1):16-22. doi: 10.13987/j.cnki.askj.2021.01.003