[1] 杨振亚, 周本智, 周 燕, 等. PEG模拟干旱对毛竹种子萌发及生长生理特性的影响[J]. 林业科学研究, 2018, 31(6):47-54. doi: 10.13275/j.cnki.lykxyj.2018.06.007
[2] WU M, HE W, WANG L N,et al. PheLBD29, an LBD transcription factor from Moso bamboo, causes leaf curvature and enhances tolerance to drought stress in transgenic Arabidopsis[J]. Journal of Plant Physiology, 2023, 280: 153865. doi: 10.1016/j.jplph.2022.153865
[3] WU M, LIU H L, GAO Y M,et al. The moso bamboo drought-induced 19 protein PheDi19-8 functions oppositely to its interacting partner, PheCDPK22, to modulate drought stress tolerance[J]. Plant Science, 2020, 299: 110605. doi: 10.1016/j.plantsci.2020.110605
[4] GAO Y M, LIU H L, ZHANG K M,et al. A moso bamboo transcription factor, Phehdz1, positively regulates the drought stress response of transgenic rice[J]. Plant cell reports, 2021, 40(1): 187-204. doi: 10.1007/s00299-020-02625-w
[5] WU M, LIU H L, HAN G M,et al. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants[J]. Scientific Reports, 2017, 7: 11721. doi: 10.1038/s41598-017-10795-z
[6] WU M, ZHANG R, XU Z Y,et al. The moso bamboo WRKY transcription factor, PheWRKY86, regulates drought tolerance in transgenic plants[J]. Plant physiology and biochemistry, 2022, 170: 180-191. doi: 10.1016/j.plaphy.2021.10.024
[7] LIU H L, GAO Y M, WU M,et al. TCP10, a TCP transcription factor in moso bamboo (Phyllostachys edulis), confers drought tolerance to transgenic plants[J]. Environmental and Experimental Botany, 2020, 172: 104002. doi: 10.1016/j.envexpbot.2020.104002
[8] XU Y Z, LIU H L, GAO Y M,et al. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2021, 40(10): 1971-1987. doi: 10.1007/s00299-021-02765-7
[9] WU M, LIU R, GAO Y M,et al. PheASR2, a novel stress-responsive transcription factor from moso bamboo (Phyllostachys edulis), enhances drought tolerance in transgenic rice via increased sensitivity to abscisic acid[J]. Plant physiology and biochemistry, 2020, 154: 184-94. doi: 10.1016/j.plaphy.2020.06.014
[10] CHEN F, LIU H L, WANG K,et al. Identification of CCCH zinc finger proteins family in moso bamboo (Phyllostachys edulis), and PeC3H74 confers drought tolerance to transgenic plants[J]. Front. Plant Sci., 2020, 11: 579255. doi: 10.3389/fpls.2020.579255
[11] WU M, LIU H X, WANG L N,et al. Comparative genomic analysis of the CPK gene family in Moso bamboo (Phyllostachys edulis) and the functions of PheCPK1 in drought stress[J]. Protoplasma, 2023, 260(1): 171-187. doi: 10.1007/s00709-022-01765-y
[12] ZHANG K M, LAN Y G, WU M,et al. PhePLATZ1, a PLATZ transcription factor in moso bamboo (Phyllostachys edulis), improves drought resistance of transgenic Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2022, 186: 121-134. doi: 10.1016/j.plaphy.2022.07.004
[13] HOU D, ZHAO Y, HU Q T,et al. PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice[J]. Tree Physiology, 2020, 40(12): 1792-1806. doi: 10.1093/treephys/tpaa099
[14] XU Y Z, WANG L N, LIU H X,et al. Identifcation of TCP family in moso bamboo (Phyllostachys edulis) and salt tolerance analysis of PheTCP9 in transgenic Arabidopsis[J]. Planta, 2022, 256(1): 5. doi: 10.1007/s00425-022-03917-z
[15] CAO, Z H, ZHANG S Z, WANG R K,et al. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants[J]. PloS ONE, 2013, 8(7): e69955. doi: 10.1371/journal.pone.0069955
[16] LIPSICK J S. One billion years of Myb[J]. Oncogene, 1996, 13(2): 223-235.
[17] OGATA K, MORIKAWA S, NAKAMURA H,et al. Comparison of the free and DNA-complexed forms of the DMA-binding domain from c-Myb[J]. Nature Structural Biology, 1995, 2(4): 309-320. doi: 10.1038/nsb0495-309
[18] 唐 宁, 陈信波. 植物MYB转录因子与非生物胁迫响应研究[J]. 生物学杂志, 2014, 31(3):74-78.
[19] SUN P P, ZHU X F, HUANG X F,et al. Overexpression of a stress-responsive MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance and increases polyamine biosynthesis[J]. Plant Physiology and Biochemistry, 2014, 78: 71-79. doi: 10.1016/j.plaphy.2014.02.022
[20] LI K Q, XING C H, YAO Z Z,et al. PbrMYB21, a novel MYB Protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene[J]. Plant Biotechnol J, 2017, 15(9): 1186-1203. doi: 10.1111/pbi.12708
[21] CUI M H, YOO K S, HYOUNG S,et al. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance[J]. FEBS Letters, 2013, 587(12): 1773-1778. doi: 10.1016/j.febslet.2013.04.028
[22] WANG N, ZHANG W, QIN M,et al. Drought tolerance conferred in soybean (Glycine max. L) by GmMYB84, a novel R2R3-MYB transcription factor[J]. Plant Cell Physiol, 2017, 58(10): 1764-1776. doi: 10.1093/pcp/pcx111
[23] DING Z H, LI S M, AN X L,et al. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana[J]. Genet Genomics, 2009, 36(1): 17-29. doi: 10.1016/S1673-8527(09)60003-5
[24] 肖冬长, 张智俊, 徐英武, 等. 毛竹 MYB 转录因子 PeMYB2 的克隆与功能分析[J]. 遗传, 2013, 35(10):1217-1225.
[25] EL-KEREAMY A, BI Y M, RANATHUNGE K,et al. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism[J]. PLoS ONE, 2012, 7(12): e52030. doi: 10.1371/journal.pone.0052030
[26] AHAMMED G J, LI X, WAN H, et al. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato[J]. Scientia Horticulturae, 2020, 270.
[27] QUAN W, HU Y, MU Z,et al. Overexpression of AtPYL5 under the control of guard cell specific promoter improves drought stress tolerance in Arabidopsis[J]. Plant Physiology and Biochemistry, 2018, 129: 150-157. doi: 10.1016/j.plaphy.2018.05.033
[28] CUI J, JIANG N, ZHOU X,et al. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress[J]. Planta, 2018, 248(6): 1487-1503. doi: 10.1007/s00425-018-2987-6
[29] KRISHNA R, KARKUTE S G, ANSARI W A,et al. Transgenic tomatoes for abiotic stress tolerance: status and way ahead[J]. 3 Biotech, 2019, 9(4): 143. doi: 10.1007/s13205-019-1665-0
[30] PENG Y, ZHANG J, CAO G,et al. Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance[J]. Plant Cell Reports, 2010, 29(7): 793-802. doi: 10.1007/s00299-010-0865-1
[31] XU G Y, ROCHA P S, WANG M L,et al. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis[J]. Planta, 2011, 234(1): 47-59. doi: 10.1007/s00425-011-1386-z
[32] THAMMEGOWDA V, HARSHAVARDHAN V S, SEILER C,et al. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance[J]. PloS ONE, 2014, 9(10): e110065. doi: 10.1371/journal.pone.0110065
[33] HUA Z M, YANG X, FROMM M E. Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins[J]. Plant Cell and Environment, 2006, 29(9): 1761-1770. doi: 10.1111/j.1365-3040.2006.01552.x
[34] SAKUMA Y, MARUYAMA K, OSAKABE Y,et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J]. Plant Cell, 2006, 18(5): 1292-1309. doi: 10.1105/tpc.105.035881
[35] CANDAT A, PASZKIEWICZ G, NEVEU M,et al. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress[J]. Plant Cell, 2014, 26(7): 3148-3166. doi: 10.1105/tpc.114.127316