[1] 谭晓风. 油茶分子育种研究进展[J]. 中南林业科技大学学报, 2023, 43(1):1-24.
[2] 张立伟, 王辽卫. 我国油茶产业的发展现状与展望[J]. 中国油脂, 2021, 46(6):6-9 + 27.
[3] 张立伟. 积极发展木本油料生产提升国内油脂供给能力[J]. 中国粮食经济, 2023, 30(5):69-71.
[4] 胡加新, 李蕊萍, 朱 雯, 等. 高州油茶光合生理特性[J]. 华南农业大学学报, 2015, 36(5):111-116.
[5] 赵君茹, 朱周俊, 肖诗鑫, 等. 高州油茶无性系叶片解剖结构及抗旱性评价[J]. 分子植物育种, 2022, 20(16):5435-5443.
[6] 张应中, 徐煲铧, 王明怀, 等. 高州油茶果实生长性状与品质的动态变化规律[J]. 林业与环境科学, 2020, 36(1):47-52.
[7] 张 鹏, 杨 颖, 奚如春, 等. 高州油茶花粉形态及其贮藏特征[J]. 林业科学研究, 2019, 32(1):90-96.
[8] 杨 颖, 张 鹏, 奚如春, 等. 高州油茶不同产区果实含油率及脂肪酸组成的变异特征[J]. 经济林研究, 2018, 36(4):104-108 + 144.
[9] CHEN J, GUO Y J, HU X W, et al. Comparison of the chloroplast genome sequences of 13 oil-tea camellia samples and identification of an undetermined oil-tea camellia species from Hainan province[J]. Frontiers in Plant Science, 2022, 12: 798581. doi: 10.3389/fpls.2021.798581
[10] YU J, YAN H Q, WU Y G, et al. Quality Evaluation of the Oil of Camellia spp.[J]. Foods, 2022, 11(15): 2221. doi: 10.3390/foods11152221
[11] QI H S, SUN X X, WANG C M, et al. Geographic isolation causes low genetic diversity and significant pedigree differentiation in populations of Camellia drupifera, a woody oil plant native to China[J]. Industrial Crops and Products, 2023, 192: 116026. doi: 10.1016/j.indcrop.2022.116026
[12] MA G Y, XIA T F, SUN X X, et al. Identification and analysis of CdS-RNase in Camellia drupifera: A key determinant of late-acting self-incompatibility[J]. Industrial Crops and Products, 2023, 203: 116990. doi: 10.1016/j.indcrop.2023.116990
[13] 汤 佳. 油茶果实发育及成熟期间主要生理生化指标变化的研究[D]. 福州: 福建农林大学, 2015.
[14] 齐红岩, 李天来, 邹琳娜, 等. 番茄果实不同发育阶段糖分组成和含量变化的研究初报[J]. 沈阳农业大学学报, 2001(5):346-348.
[15] 陈俊伟. 柑橘果实糖运输与积累的生理机制研究[D]. 杭州: 浙江大学, 2002.
[16] 吉训志, 胡丽松, 秦晓威, 等. 胡椒不同时期体细胞胚中糖含量及相关酶活变化[J]. 分子植物育种, 2020, 18(24):8288-8293.
[17] 苏 艳, 原牡丹, 侯智霞, 等. 蔗糖代谢相关酶在果实中的作用[J]. 北方园艺, 2008(9):50-54.
[18] HE Y, CHEN R F, YANG Y, et al. Sugar metabolism and transcriptome analysis reveal key sugar transporters during camellia oleifera fruit development[J]. International Journal of Molecular Sciences, 2022, 23(2): 822. doi: 10.3390/ijms23020822
[19] 杨柳燕, 陈菁菁, 陈年来. 甜瓜叶片光合产物输出能力对弱光的响应[J]. 中国农业科学, 2018, 51(13):2561-2569.
[20] LUNN J E, MACRAE E. New complexities in the synthesis of sucrose[J]. Current opinion in plant biology, 2003, 6(3): 208-214. doi: 10.1016/S1369-5266(03)00033-5
[21] 边彩燕, 姜寒玉, 朱永永, 等. 河西地区赤霞珠葡萄果实发育期糖代谢及相关酶活性的变化[J]. 甘肃农业科技, 2021, 52(6):42-48.
[22] 安 娇. 软枣猕猴桃果实发育过程中糖酸组分及其相关酶活性的变化[D]. 延边: 延边大学, 2020.
[23] WANG X Y, YOU H L, YUAN Y H, et al. The cellular pathway and enzymatic activity for phloem-unloading transition in developing Camellia oleifera Abel. Fruit[J]. Acta Physiologiae Plantarum, 2018, 40(23): 1-11.
[24] 王秀贞, 吴 琪, 王志伟, 等. 花生子仁糖含量与相关酶活性关系的研究[J]. 山东农业科学, 2020, 52(9):19-22.
[25] 姚绍嫦, 黄 鼎, 谭 勇, 等. 牛大力块根糖积累及其相关酶活性变化研究[J]. 广西植物, 2021, 41(11):1939-1948.
[26] YU F, TRUONG T V, HE Q, et al. Dry Season Irrigation Promotes Leaf Growth in Eucalyptus urophylla x E. grandis under Fertilization[J]. Forests, 2019, 10(1): 67. doi: 10.3390/f10010067
[27] GHRAMH H A, KHAN K A, AHMED Z, et al. Quality evaluation of Saudi honey harvested from the Asir province by using high-performance liquid chromatography (HPLC)[J]. Saudi journal of biological sciences, 2020, 27(8): 2097-2105. doi: 10.1016/j.sjbs.2020.04.009
[28] BRAUN D M, WANG L, RUAN Y L. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security[J]. Journal of Experimental Botany, 2014, 65(7): 1713-1735. doi: 10.1093/jxb/ert416
[29] 平晓燕, 周广胜, 孙敬松. 植物光合产物分配及其影响因子研究进展[J]. 植物生态学报, 2010, 34(1):100-111.
[30] WARDLAW I F. Tansley Review No. 27 The control of carbon partitioning in plants[J]. New phytologist, 1990, 116(3): 341-381. doi: 10.1111/j.1469-8137.1990.tb00524.x
[31] DENG X X, SHI Z, ZENG L X, et al. Photosynthetic product allocations to the organs of pinus massoniana are not affected by differences in synthesis or temporal variations in translocation rates[J]. Forests, 2021, 12(4): 471. doi: 10.3390/f12040471
[32] 何雪菲, 黄 战, 张文太, 等. 施氮水平对库尔勒香梨光合产物分配的影响[J]. 应用生态学报, 2020, 31(8):2637-2643.
[33] RAI M K, SHEKHAWAT N S. Recent advances in genetic engineering for improvement of fruit crops[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2014, 116: 1-15. doi: 10.1007/s11240-013-0389-9
[34] IQBAL S, NI X P, BILAL M S, et al. Identification and expression profiling of sugar transporter genes during sugar accumulation at different stages of fruit development in apricot[J]. Gene, 2020, 742: 144584. doi: 10.1016/j.gene.2020.144584
[35] 李 洁, 姚宝花, 宋宇琴, 等. 枣不同品种和果实不同部位糖积累及相关酶活性[J]. 林业科学, 2017, 53(12):30-40.
[36] 刘有春, 陶承光, 魏永祥, 等. 越橘果实糖酸含量和不同发育阶段的变化及其与叶片中可溶性糖含量的相关关系[J]. 中国农业科学, 2013, 46(19):4110-4118.
[37] 王 晨, 房经贵, 王 涛, 等. 果树果实中的糖代谢[J]. 浙江农业学报, 2009, 21(5):529-534.
[38] 张亚若, 童盼盼, 梁丰志, 等. 枣果实糖组分含量动态变化与相关基因表达分析[J]. 江西农业学报, 2021, 33(3):25-31.
[39] 于 波, 秦嗣军, 吕德国. 锌对苹果果实膨大期叶片13C光合产物合成及向果实转移分配的影响[J]. 应用生态学报, 2021, 32(6):2007-2013.
[40] 蔡贵芳, 刘 艳, 白立华, 等. 去果河套蜜瓜源叶碳水化合物及其相关酶昼夜变化特征[J]. 西北植物学报, 2012, 32(9):1774-1780.
[41] 赵建华, 李浩霞, 尹 跃, 等. 4种枸杞果实发育过程中糖积累与蔗糖代谢酶的关系[J]. 浙江农林大学学报, 2016, 33(6):1025-1032.
[42] 陈梓云. 铁皮石斛多糖积累与蔗糖代谢的相关性[D]. 杭州: 浙江农林大学, 2015.
[43] 耿彬彬, 刘 姣, 郭育强, 等. 木薯MeCWINV4启动子的克隆及其活性分析[J]. 江苏农业科学, 2016, 44(4):36-40.
[44] 赖呈纯, 张富民, 赖恭梯, 等. 摘心对‘巨峰’葡萄生长及蔗糖和淀粉代谢的调控作用[J]. 热带亚热带植物学报, 2022, 30(5):623-635.
[45] WAN H J, WU L M, YANG Y J, et al. Evolution of sucrose metabolism: the dichotomy of invertases and beyond[J]. Trends in plant science, 2018, 23(2): 163-177. doi: 10.1016/j.tplants.2017.11.001
[46] WINTER H, HUBER S C. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes[J]. Critical reviews in biochemistry and molecular biology, 2000, 35(4): 253-289. doi: 10.1080/10409230008984165
[47] 高 芸. 转化酶研究进展[J]. 现代农业科技, 2010(23):16-18.
[48] 李 洁, 姚宝花, 宋宇琴, 等. 枣不同品种和果实不同部位糖积累及相关酶活性[J]. 林业科学, 2017, 53(12):30-40.
[49] SHAO K, BAI Z Q, LI M H, et al. Sucrose metabolism enzymes affect sucrose content rather than root weight in sugar beet (beta vulgaris) at different growth stages[J]. Sugar Tech, 2020, 22(3): 504-517. doi: 10.1007/s12355-019-00781-2
[50] SU J, ZHANG C X, ZHU L C, et al. MdFRK2-mediated sugar metabolism accelerates cellulose accumulation in apple and poplar[J]. Biotechnology for Biofuels, 2021, 14(1): 137. doi: 10.1186/s13068-021-01989-9
[51] TONG X L, WANG Z Y, MA B Q, et al. Structure and expression analysis of the sucrose synthase gene family in apple[J]. Journal of Integrative Agriculture, 2018, 17(4): 847-856. doi: 10.1016/S2095-3119(17)61755-6