[1] Liu J S, Ma Q, Hui X L, et al. Long-term high-P fertilizer input decreased the total bacterial diversity but not phoD-harboring bacteria in wheat rhizosphere soil with available-P deficiency[J]. Soil Biology and Biochemistry, 2020, 149: 107918. doi: 10.1016/j.soilbio.2020.107918
[2] Fletcher D M, Ruiz S, Dias T, et al. Linking root structure to functionality: the impact of root system architecture on citrate‐enhanced phosphate uptake[J]. New Phytologist, 2020, 227(2). doi: 10.1111/nph.16554.
[3] 韦宜慧, 陈嘉琪, 董玉红, 等. 杉木人工林土壤溶磷细菌筛选及培养条件优化[J]. 林业科学研究, 2020, 33(4):83-91.
[4] Yuan Z W. Intensification of phosphorus cycling in China since the 1600s[J]. PANS, 2016, 113(10): 2609. doi: 10.1073/pnas.1519554113
[5] Bailey-Serres J, Parker J E, Ainsworth E A, et al. Genetic strategies for improving crop yields[J]. Nature, 2019, 575(7781): 109-118. doi: 10.1038/s41586-019-1679-0
[6] Mehlich A. New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc[J]. Communications in Soil Science and Plant Analysis, 1978, 9(6): 477-492. doi: 10.1080/00103627809366824
[7] Chang S C, Jackson M L. Fractionation of soil phosphorous[J]. Soil Science, 1957, 84(2): 133-144. doi: 10.1097/00010694-195708000-00005
[8] Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil science Society of America Journal, 1982, 46(5): 970-976. doi: 10.2136/sssaj1982.03615995004600050017x
[9] Bu W S, Gu H J, Zhang C C, et al. Mixed broadleaved tree species increases soil phosphorus availability but decreases the coniferous tree nutrient concentration in subtropical China[J]. Forests, 2020, 11(4): 461-476. doi: 10.3390/f11040461
[10] Niederberger J, Kohler M, Bauhus J. Distribution of phosphorus fractions with different plant availability in German forest soils and their relationship with common soil properties and foliar P contents[J]. Soil, 2019, 5(2): 189-204. doi: 10.5194/soil-5-189-2019
[11] 冯跃华, 张杨珠. 土壤有机磷分级研究进展[J]. 湖南农业大学学报: 自然科学版, 2002, 28(3):259-264.
[12] DeLuca T H, Glanville H C, Harris M, et al. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes[J]. Soil Biology and Biochemistry, 2015, 88: 110-119. doi: 10.1016/j.soilbio.2015.05.016
[13] 吴高洋, 陈伏生, 万松泽, 等. 毛竹根际新黑曲霉的解磷特性及促生作用[J]. 林业科学研究, 2019, 32(4):144-151.
[14] Zhang Y, Chen F S, Wu X Q, et al. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments[J]. PloS One, 2018, 13(7): e0199625. doi: 10.1371/journal.pone.0199625
[15] Fan X, Chang W, Sui X, et al. Changes in rhizobacterial community mediating atrazine dissipation by arbuscular mycorrhiza[J]. Chemosphere, 2020.doi:10.1016/j.chemosphere.2020.127046.
[16] 吴安琪, 张 扬, 万松泽, 等. 一株金黄蓝状菌解磷特性及其对毛竹的促生效应[J]. 应用生态学报, 2019, 30(1):176-182.
[17] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[18] Tabatabai M A, Bremner J M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity[J]. Soil Biology and Biochemistry, 1969, 1(4): 301-307. doi: 10.1016/0038-0717(69)90012-1
[19] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
[20] Ohno T, Zibilske L M. Determination of low concentrations of phosphorus in soil extracts using malachite green[J]. Soil Science Society of America Journal, 1991, 55(3): 892-895. doi: 10.2136/sssaj1991.03615995005500030046x
[21] Wu C, Mo Q, Wang H, et al. Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) invasion affects soil phosphorus dynamics in adjacent coniferous forests in subtropical China[J]. Annals of Forest Science, 2018, 75(1): 24-33. doi: 10.1007/s13595-018-0703-0
[22] Hoang K T K, Marschner P. P pools after seven-year P fertiliser application are influenced by wheat straw addition and wheat growth[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(3): 603-610. doi: 10.1007/s42729-019-00059-2
[23] 蔡 观, 胡亚军, 王婷婷, 等. 基于生物有效性的农田土壤磷素组分特征及其影响因素分析[J]. 环境科学, 2017, 38(4):1606-1612.
[24] Wu H L, Xiang W H, Chen L, et al. Soil phosphorus bioavailability and recycling increased with stand age in Chinese fir plantations[J]. Ecosystems, 2020, 23: 973-988. doi: 10.1007/s10021-019-00450-1
[25] Liang J L, Liu J, Jia P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining[J]. The ISME Journal, 2020, 14(6): 1600-1613.
[26] Illmer P, Schinner F. Solubilization of inorganic calcium phosphates-solubilization mechanisms[J]. Soil Biology and Biochemistry, 1995, 27(3): 257-263. doi: 10.1016/0038-0717(94)00190-C
[27] 秦利均, 杨永柱, 杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展[J]. 生命科学研究, 2019, 23(1):63-68, 90.
[28] Ge X, Wang L, Zhang W, et al. Molecular understanding of humic acid-limited phosphate precipitation and transformation[J]. Environmental Science and Technology, 2020, 54(1): 207-215.
[29] Liang C, Matthias K, Rainer G J. Microbial necromass on the rise: the growing focus on its role in soil organic matter development[J]. Soil Biology and Biochemistry, 2020,150:108000. doi: 10.1016/j.soilbio.2020.108000
[30] Liu R, Zhang Y, Hu X F, et al. Litter manipulation effects on microbial communities and enzymatic activities vary with soil depth in a subtropical Chinese fir plantation[J]. Forest Ecology and Management, 2021, 480: 118641. doi: 10.1016/j.foreco.2020.118641
[31] Luo G W, Sun B, Li L, et al. Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD- and phoC-harboring functional microbial populations[J]. Soil Biology and Biochemistry, 2019, 139: 107632. doi: 10.1016/j.soilbio.2019.107632
[32] Wu Q S, Li Y, Zou Y N, et al. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels[J]. Mycorrhiza, 2015, 25(2): 121-130. doi: 10.1007/s00572-014-0594-3
[33] 刘 仁, 袁小兰, 刘 俏, 等. 林下植被去除对杉木人工林土壤酶活性及其化学计量比的影响[J]. 林业科学研究, 2020, 33(5):121-128.
[34] Spohn M, Zeißig I, Brucker E, et al. Phosphorus solubilization in the rhizosphere in two saprolites with contrasting phosphorus fractions[J]. Geoderma, 2020. doi: 10.1016/j.geoderma.2020.114245.
[35] Orhan F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum)[J]. Brazilian Journal of Microbiology, 2016, 47(3): 621-627. doi: 10.1016/j.bjm.2016.04.001
[36] Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522-537. doi: 10.1016/j.scitotenv.2017.08.095
[37] Efthymiou A, Grønlund M, Müller-Stöver D S. Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains[J]. Soil Biology and Biochemistry, 2018, 116: 139-147.