[1] 杨丽霞, 潘剑君. 土壤活性有机碳库测定方法研究进展[J]. 土壤通报, 2004, 35(4):502-506. doi: 10.3321/j.issn:0564-3945.2004.04.023
[2] Robledano-Aymerich F, Romero-Díaz A, Belmonte-Serrato F, et al. Ecogeomorphological consequences of land abandonment in semiarid Mediterranean areas: Integrated assessment of physical evolution and biodiversity[J]. Agriculture Ecosystems & Environment, 2014, 197: 222-242.
[3] 范亚东, 范春梅. 沿海滩涂资源围垦开发利用需求与制约因素[J]. 环球市场, 2019(34):285-287.
[4] 李建国, 赵宴青, 袁冯伟, 等. 滨海滩涂围垦对土壤团聚体分布及其有机碳富集的影响——以江苏省如东县垦区为例[J]. 土壤通报, 2018, 294(3):54-61.
[5] 杨秀清, 韩有志. 关帝山森林土壤有机碳和氮素的空间变异特征[J]. 林业科学研究, 2011, 24(2):223-229.
[6] Nath A J, Brahma B, Sileshi G W, et al. Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India[J]. Science of The Total Environment, 2018, 624: 908-917. doi: 10.1016/j.scitotenv.2017.12.199
[7] 张苗苗, 陈 伟, 林 丽, 等. 青海省不同高寒草地土壤主要养分及溶解性有机碳特性研究[J]. 草业学报, 2019, 28(3):20-28. doi: 10.11686/cyxb2018540
[8] 张 欢. 华东沿海滩涂围垦区土壤有机碳动态及其模型预测[D]. 南京: 南京大学, 2017.
[9] Mma B, Cep C, Weaa D, et al. Tamm review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis - ScienceDirect[J]. Forest Ecology and Management, 2020, 466: 1-25.
[10] Xu H, Qu Q, Chen Y, et al. Responses of soil enzyme activity and soil organic carbon stability over time after cropland abandonment in different vegetation zones of the Loess Plateau of China[J]. Catena, 2021, 196: 1-13.
[11] Lal R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems[J]. Global Change Biology., 2018, 24(8): 3285-3301. doi: 10.1111/gcb.14054
[12] 聂浩亮, 薄慧娟, 张润哲, 等. 北京海坨山典型林分土壤有机碳含量及有机碳密度垂直分布特征[J]. 林业科学研究, 2020, 33(6):158-165.
[13] 陈仕奇, 吕 盛, 高 明, 等. 缙云山不同林分下土壤有机碳及矿化特征[J]. 环境科学, 2019, 40(2):953-960.
[14] Li Y, Xu M, Zou X, et al. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico[J]. Global Change Biology, 2010, 11(2): 239-248.
[15] Yan M, Li T, Li X, et al. Microbial biomass and activity restrict soil function recovery of a post-mining land in eastern Loess Plateau[J]. Catena, 2021, 199(8): 105-107.
[16] 王 洪, 张金池, 张东海, 等. 苏北泥质海岸主要防护林树种生长特性[J]. 亚热带农业研究, 2010, 6(3):167-171.
[17] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
[18] 李振高, 骆永明, 滕 应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008.
[19] Ghani A, Dexter M, Perrott K W. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation[J]. Soil Bio1ogy and Biochemistry, 2003, 35(9): 1231-1243. doi: 10.1016/S0038-0717(03)00186-X
[20] Song B L, Yan M J, Hou H, et al. Distribution of soil carbon and nitrogen in two typical forests in the semiarid region of the Loess Plateau, China[J]. Catena, 2016, 143(3): 159-166.
[21] 王艳丽, 字洪标, 程瑞希, 等. 青海省森林土壤有机碳氮储量及其垂直分布特征[J]. 生态学报, 2019, 39(11):4096-4105.
[22] 张雄伟, 李 刚, 董宽虎, 等. 山西主要草地类型土壤有机碳储量及其垂直分配特征[J]. 中国草地学报, 2020, 233(1):144-149.
[23] García-Gómez C, Fernández M D, García S, et al. Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community[J]. Environmental Science and Pollution Research, 2018, 25(28): 28140-28152. doi: 10.1007/s11356-018-2833-1
[24] Soleimani A, Hosseini S M, Massah Bavani A R, et al. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran[J]. Catena, 2019, 177: 227-237. doi: 10.1016/j.catena.2019.02.018
[25] Kooch Y, Sanji R, Tabari M. The effect of vegetation change in C and N contents in litter and soil organic fractions of a Northern Iran temperate forest[J]. Catena, 2019, 178: 32-39. doi: 10.1016/j.catena.2019.03.009
[26] 刘 宝. 中亚热带四种森林类型土壤碳库及微生物群落结构特征[D]. 福州: 福建农林大学, 2017.
[27] Clemmensen K E, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013, 339(6127): 1615-1618. doi: 10.1126/science.1231923
[28] 石丽红, 李 超, 唐海明, 等. 长期不同施肥措施对双季稻田土壤活性有机碳组分和水解酶活性的影响[J]. 应用生态学报, 2021, 32(3):921-930.
[29] Sokol N W, Sanderman J, Bradford M A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry[J]. Global Change Biology, 2019, 25(1): 12-24. doi: 10.1111/gcb.14482
[30] Ni X, Liao S, Tan S, et al. The vertical distribution and control of microbial necromass carbon in forest soils[J]. Global Ecology and Biogeography, 2020, 29(10): 1829-1839. doi: 10.1111/geb.13159
[31] Qi H, Zhao Y, Wang X. Manganese dioxide driven the carbon and nitrogen transformation by activating the complementary effects of core bacteria in composting[J]. Bioresource Technology, 2021, 330: 1-9.
[32] 倪进治, 徐建民, 谢正苗, 等. 不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J]. 土壤学报, 2003, 40(5):724-730. doi: 10.3321/j.issn:0564-3929.2003.05.013
[33] 方 晰. 杉木人工林生态系统碳贮量与碳平衡的研究[D]. 长沙: 中南林业科技大学, 2004.
[34] Sun S, Song X, He Y, et al. Effects of neighborhood tree species diversity on soil organic carbon and labile carbon in subtropical forest[M]. Boca Raton, FL: CRC Press, 2020: 106-115.
[35] 江 洪. 滨海盐土地人工林细根时空分布及其影响因素研究[D]. 上海: 华东师范大学, 2016.
[36] 朱丽琴, 黄荣珍, 段洪浪, 等. 红壤侵蚀地不同人工恢复林对土壤总有机碳和活性有机碳的影响[J]. 生态学报, 2017, 37(1):249-257.
[37] 朱浩宇, 王子芳, 陆 畅, 等. 缙云山5种植被下土壤活性有机碳及碳库变化特征[J]. 土壤, 2021, 53(2):354-360.
[38] 肖 烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异[J]. 生态学报, 2015, 35(23):7625-7633.
[39] Pang D, Cui M, Liu Y, et al. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China[J]. Ecological Engineering, 2019, 138: 391-402. doi: 10.1016/j.ecoleng.2019.08.008